Меню
  Список тем
  Поиск
Полезная информация
  Краткие содержания
  Словари и энциклопедии
  Классическая литература
Заказ книг и дисков по обучению
  Учебники, словари (labirint.ru)
  Учебная литература (Читай-город.ru)
  Учебная литература (book24.ru)
  Учебная литература (Буквоед.ru)
  Технические и естественные науки (labirint.ru)
  Технические и естественные науки (Читай-город.ru)
  Общественные и гуманитарные науки (labirint.ru)
  Общественные и гуманитарные науки (Читай-город.ru)
  Медицина (labirint.ru)
  Медицина (Читай-город.ru)
  Иностранные языки (labirint.ru)
  Иностранные языки (Читай-город.ru)
  Иностранные языки (Буквоед.ru)
  Искусство. Культура (labirint.ru)
  Искусство. Культура (Читай-город.ru)
  Экономика. Бизнес. Право (labirint.ru)
  Экономика. Бизнес. Право (Читай-город.ru)
  Экономика. Бизнес. Право (book24.ru)
  Экономика. Бизнес. Право (Буквоед.ru)
  Эзотерика и религия (labirint.ru)
  Эзотерика и религия (Читай-город.ru)
  Наука, увлечения, домоводство (book24.ru)
  Наука, увлечения, домоводство (Буквоед.ru)
  Для дома, увлечения (labirint.ru)
  Для дома, увлечения (Читай-город.ru)
  Для детей (labirint.ru)
  Для детей (Читай-город.ru)
  Для детей (book24.ru)
  Компакт-диски (labirint.ru)
  Художественная литература (labirint.ru)
  Художественная литература (Читай-город.ru)
  Художественная литература (Book24.ru)
  Художественная литература (Буквоед)
Реклама
Разное
  Отправить сообщение администрации сайта
  Соглашение на обработку персональных данных
Другие наши сайты
Приглашаем посетить
  Клюев (klyuev.lit-info.ru)

   

Устройство и принцип работы двигателя автомобиля

Категория: Транспорт

Устройство и принцип работы двигателя автомобиля

КШМ кривошипно-шатунный механизм (сокращенное название – КШМ) воспринимает давление газов, возникающих при сгорании топливно-воздушной смеси в цилиндрах двигателя, и преобразует его в механическую работу по вращению коленчатого вала.

Кривошипно-шатунный механизм состоит из следующих основных элементов: поршни; шатуны; гильзы (втулки) цилиндров; коленчатый вал; маховик.

в гильзе цилиндра. Поршень состоит из единых днища, головки и юбки. Днище поршня может иметь различную форму (плоскую, выпуклую, вогнутую и др.), в нем также может быть выполнена камера сгорания (дизельные двигатели). В головке нарезаны канавки для размещения поршневых колец. На современных двигателях используется два типа колец: маслосъемные и компрессионные. Компрессионные кольца препятствуют прорыву газов в картер двигателя. Маслосъемные кольца удаляют излишки масла на стенках цилиндра. В юбке выполнены две бобышки для размещения поршневого пальца, который соединяет поршень с шатуном. Шатун передает усилие от поршня к коленчатому валу, для этого он имеет шарнирное соединение и с поршнем и с коленчатым валом. Шатуны изготавливаются, как правило, из стали путем штамповки или ковки. Шатуны двигателей спортивных автомобилей отлиты из сплава титана. Конструктивно шатун состоит из верхней головки, стержня и нижней головки. В верхней головке размещается поршневой палец. Предусматривается вращение поршневого пальца в головке шатуна и бобышках поршня. Такой палец имеет название «плавающий». Стержень шатуна имеет двутавровое сечение. Нижняя головка выполнена разборной, что позволяет обеспечить соединение с шейкой коленчатого вала. Современной технологией является контролируемое раскалывание цельной нижней головки шатуна. Благодаря неповторимой поверхности излома обеспечивается высокая точность соединения частей нижней головки. Коленчатый вал воспринимает усилия от шатуна и преобразует их в крутящий момент. Коленчатые валы изготавливаются из высокопрочного чугуна и стали. Коленчатый вал состоит из коренных и шатунных шеек, соединенных щеками. Щеки образуют противовесы шатунным шейкам. Коренные и шатунные шейки вращаются в подшипниках скольжения, выполненных в виде разъемных тонкостенных вкладышей. Внутри шеек и щек коленчатого вала просверлены отверстия для прохода масла, которое к каждой их шеек подается под давлением. На конце коленчатого вала устанавливается маховик. В настоящее время применяются т. н. двухмассовые маховики, представляющие собой упруго соединенных два диска. Через зубчатый венец маховика производится запуск двигателя стартером. Для предотвращения крутильных колебаний (чередующееся закручивание и раскручивание коленчатого вала) на другом конце коленчатого вала может устанавливаться гаситель крутильных колебаний. Гаситель колебаний состоит из двух металлических колец, соединенных через упругую среду (эластомер, вязкое масло). На внешнем кольце гасителя крутильных колебаний выполнен ременной шкив (звездочка цепи).

Различают следующие компоновочные схемы расположения цилиндров в двигателе:

рядная (оси цилиндров расположены в одной плоскости);

оппозитная (оси цилиндров расположены в двух плоскостях под углом 180°);

W–образная (две VR схемы, расположенных V-образно со смещением на одном коленчатом валу). Компоновочная схема определяет уровень балансировки двигателя. Наилучшую балансировку имеет двигатель с оппозитным расположением цилиндров. Достаточно сбалансирован рядный четырехцилиндровый двигатель. V-образный двигатель имеет наилучшую балансировку при значении угла между цилиндрами 60° и 120°. Для уменьшения вибрации в рядных двигателях применяются балансирные валы, расположенные под коленчатым валом в масляном поддоне.

НЕИСПРАВНОСТИ КШМ

К неисправностям кривошипно-шатунного механизма относятся:

износ коренных и шатунных подшипников;

износ поршней и цилиндров;

поломка и залегание поршневых колец.

Основными причинами данных неисправностей являются:

выработка установленного ресурса двигателя;

нарушение правил эксплуатации двигателя (использование некачественного масла, увеличение сроков технического обслуживания, длительное использование автомобиля под нагрузкой и др.) Практически все неисправности кривошипно-шатунного механизма (КШМ) могут быть диагностированы по внешним признакам, а также с помощью простейших приборов (стетоскопа, компрессометра). Неисправности КШМ сопровождаются посторонними шумами и стуками, дымлением, падением компрессии, повышенным расходом масла.

Внешние признаки и соответствующие им неисправности КШМ

снижение давления масла (горит сигнальная лампа)

износ коренных подшипников

плавающий глухой стук в средней части блока цилиндров (усиливается при увеличении оборотов и нагрузки, пропадает при отключении соответствующей свечи зажигания);

снижение давления масла (горит сигнальная лампа)

звонкий стук (стук глиняной посуды) на холодном двигателе (исчезает при прогреве);

синий дым отработавших газов

износ поршней и цилиндров
звонкий стук в верхней части блока цилиндров на всех режимах работы двигателя (усиливается при увеличении оборотов и нагрузки, пропадает при отключении соответствующей свечи зажигания) износ поршневых пальцев

синий дым отработавших газов;

снижение уровня масла в картере двигателя;

работа двигателя с перебоями

автосервис.

смеси (в зависимости от типа двигателя) и выпуска из цилиндров отработавших газов. На широко распространенных четырехтактных поршневых двигателях внутреннего сгорания применяются клапанные газораспределительные механизмы, поэтому устройство ГРМ рассмотрено именно на его примере. Газораспределительный механизм имеет следующее общее устройство:

клапаны;

привод клапанов;

распределительный вал;

привод распределительного вала.

Клапаны непосредственно осуществляют подачу в цилиндры воздуха (топливно-воздушной смеси) и выпуск отработавших газов. Клапан состоит из тарелки и стержня. На современных двигателях клапаны располагаются в головке блока цилиндров, а место соприкосновения клапана с ней называется седло. Различают впускные и выпускные клапаны. Для лучшего наполнения цилиндров диаметр тарелки впускного клапана больше, чем выпускного. Клапан удерживается в закрытом состоянии с помощью пружины, а открывается при нажатии на стержень. Пружина закреплена на стержне с помощью тарелки пружины и сухарей. Клапанные пружины имеют определенную жесткость, обеспечивающую закрытие клапана при работе. Для предупреждения резонансных колебаний на клапанах может устанавливаться две пружины меньшей жесткости, имеющие противоположную навивку. Клапаны изготавливаются из сплавов. Рабочая кромка тарелки клапана усилена. Стержень впускного клапана, как правило, полнотелый, а выпускного – полый, с натриевым наполнением для лучшего охлаждения. Большинство современных ДВС имеют по два впускных и два выпускных клапана на каждый цилиндр. Помимо данной схемы ГРМ используется трехклапанная схема (два впускных, один выпускной), пятиклапанная схема (три впускных, два выпускных). Использование большего числа клапанов ограничивается размером камеры сгорания и сложностью привода. Открытие клапана осуществляется с помощью привода, обеспечивающего передачу усилия от распределительного вала на клапан. В настоящее время применяются две основные схемы привода клапанов:

гидравлические толкатели;

стороной опирается на стержень клапана, другой – на гидрокомпенсатор (в некоторых конструкциях на шаровую опору). Для снижения потерь на трение место сопряжения рычага и кулачка распределительного вала выполнено в виде ролика. С помощью гидрокомпенсаторов в приводе клапанов реализуется нулевой тепловой зазор во всех положениях, обеспечивается меньший шум и мягкость работы. Конструктивно гидрокомпенсатор состоит из цилиндра, поршня с пружиной, обратного клапана и каналов для подвода масла. Гидравлический компенсатор, расположенный непосредственно на толкателе клапана, носит название гидротолкателя.

Распределительный вал обеспечивает функционирование газораспределительного механизма в соответствии с принятым для данного двигателя порядком работы цилиндров и фазами газораспределения. Он представляет собой вал с расположенными кулачками. Форма кулачков определяет фазы газораспределения, а именно моменты открытия-закрытия клапанов и продолжительность их работы. Существенное повышение эффективности ГРМ, а следовательно и улучшение характеристик двигателя дает применение различных систем изменения фаз газораспределения. На современных двигателях распределительный вал расположен в головке блока цилиндров, при этом различают две таких схемы:

одновальная – SOHC (Single OverHead Camshaft);

двухвальная - DOHC (Duble OverHead Camshaft).

В связи с применением четырех клапанов на один цилиндр предпочтение отдается двухвальной схеме ГРМ (один распределительный вал обеспечивает привод впускных клапанов, другой вал – выпускных). Распределительный вал приводится в действие от коленчатого вала с помощью привода, который осуществляет его вращение в два раза медленнее коленчатого вала (за один цикл работы двигателя конкретный клапан открывается только один раз). В качестве привода распределительного вала используются следующие виды передач:

цепная;

зубчатая.

Ременная и зубчатая передачи приводят в действие распределительный вал, расположенный в головке блока цилиндров. Зубчатая передача вращает, как правило, распределительный вал в блоке цилиндров. Ременная и цепная передачи имеют как достоинства, так и недостатки, поэтому в ГРМ применяются на равных. Цепной привод более надежный, но цепь тяжелее ремня, поэтому требует дополнительных устройств для натяжения и гашения колебаний. Ременной привод не требует смазки, поэтому на шкивы устанавливается открыто. Вместе с тем, ремень в сравнении с цепью имеет ограниченный ресурс. В качестве ременного привода распределительного вала широко используются зубчатые ремни.

нарушение тепловых зазоров клапанов (на двигателях с регулируемым зазором);

неисправности гидрокомпенсаторов (на двигателях с автоматической регулировкой зазоров);

снижение упругости и поломка пружин клапанов;

зависание клапанов;

износ и удлинение цепи (ремня) привода распределительного вала;

износ зубчатого шкива привода распределительного вала;

износ маслоотражающих колпачков, стержней клапанов, направляющих втулок;

нагар на клапанах.

выработка установленного ресурса двигателя и, как следствие, высокий износ конструктивных элементов;

нарушение правил эксплуатации двигателя, в том числе использование некачественного (жидкого), загрязненного масла, применение бензина с высоким содержанием смол, длительная работа двигателя на предельных оборотах.

бензина, сопровождающееся отложением смол на стержнях клапана. Другой причиной является ослабление или поломка пружин клапанов. В этом случае на высоких оборотах двигателя клапан не успевает сесть в «седло», искривляется и заклинивает (зависает) в направляющей втулке. К счастью, данная неисправность на современных автомобилях встречается достаточно редко.

Отдельно необходимо сказать о неисправностях гидрокомпенсаторов. При использовании жидкого или сильно загрязненного масла гидрокомпенсатор перестает выполнять свою основную функцию, а именно автоматически компенсировать зазоры в ГРМ. Дальнейшая эксплуатация двигателя может привести к заклиниванию гидрокомпенсаторов.

Нарушение теплового зазора на двигателях с регулируемым зазором может произойти по причине износа подшипников и кулачков распределительного вала, износа зубчатого шкива привода распределительного вала, а также вследствие неправильной регулировки. Неисправности ГРМ достаточно сложно диагностировать, т. к. сходные внешние признаки могут соответствовать нескольким неисправностям. Зачастую конкретная неисправность устанавливается непосредственным осмотром конструктивных элементов ГРМ со снятием крышки головки блока цилиндров. Большинство неисправностей газораспределительного механизма приводит к нарушениям фаз газораспределения, при которых двигатель начинает работать нестабильно и не развивает номинальной мощности.

Внешние признаки и соответствующие им неисправности ГРМ

металлический стук в головке блока цилиндров на малых и средних оборотах;

снижение мощности двигателя

нарушение теплового зазора клапанов;

износ подшипников, кулачков распределительного вала

металлический стук в головке блока цилиндров на холодном двигателе;

неисправности гидрокомпенсаторов

шум в районе привода распределительного вала;

выстрелы в глушитель

износ и удлинение цепи (ремня) привода распределительного вала;

износ зубчатого шкива привода

синий дым отработавших газов;

снижение уровня масла в картере двигателя;

снижение мощности двигателя

износ маслоотражающих колпачков, стержней клапанов, направляющих втулок;

неисправности КШМ

звонкие металлические стуки (детонационные стуки) при разгоне автомобиля;

работа двигателя с перебоями

нагар на клапанах;

неисправности КШМ;

бензин низкого качества

кратковременные провалы в работе холодного двигателя;

снижение мощности двигателя;

перегрев двигателя

снижение упругости и поломка пружин клапанов;

зависание клапанов

Система охлаждения предназначена для охлаждения деталей двигателя, нагреваемых в результате его работы. На современных автомобилях система охлаждения, помимо основной функции, выполняет ряд других функций, в том числе:

нагрев воздуха в системе отопления, вентиляции и кондиционирования;

охлаждение масла в системе смазки;

охлаждение отработавших газов в системе рециркуляции отработавших газов;

охлаждение воздуха в системе турбонаддува;

охлаждение рабочей жидкости в автоматической коробке передач.

В зависимости от способа охлаждения различают следующие виды систем охлаждения:

воздушная (открытого типа);

комбинированная.

В системе жидкостного охлаждения тепло от нагретых частей двигателя отводится потоком жидкости. Воздушная система для охлаждения использует поток воздуха. Комбинированная система объединяет жидкостную и воздушную системы. На автомобилях наибольшее распространение получили система жидкостного охлаждения. Данная система обеспечивает равномерное и эффективное охлаждение, а также имеет меньший уровень шума. Поэтому, устройство и принцип действия системы охлаждения рассмотрены на примере системы жидкостного охлаждения. Конструкция системы охлаждения бензинового и дизельного двигателей подобны. Система охлаждения двигателя имеет следующее общее устройство:

радиатор системы охлаждения;

теплообменник отопителя;

центробежный насос;

термостат;

вентилятор;

элементы управления;

«рубашка охлаждения» двигателя;

патрубки.

Радиатор предназначен для охлаждения нагретой охлаждающей жидкости потоком воздуха. Для увеличения теплоотдачи радиатор имеет специальное трубчатое устройство. Наряду с основным радиатором в системе охлаждения могут устанавливаться масляный радиатор и радиатор системы рециркуляции отработавших газов. Масляный радиатор служит для охлаждения масла в системе смазки. Радиатор системы рециркуляции отработавших газов охлаждает отработавшие газы, чем достигается снижение температуры сгорания топливно-воздушной смеси и образования оксидов азота. Работу радиатора отработавших газов обеспечивает дополнительный насос циркуляции охлаждающей жидкости, включенный в систему охлаждения. Теплообменник отопителя выполняет функцию, противоположную радиатору системы охлаждения. Теплообменник нагревает, проходящий через него, воздух. Для эффективной работы теплообменник отопителя устанавливается непосредственно у выхода нагретой охлаждающей жидкости из двигателя. Для компенсации изменения объема охлаждающей жидкости вследствие температуры в системе устанавливается расширительный бачок. Заполнение системы охлаждающей жидкостью обычно осуществляется через расширительный бачок. Циркуляция охлаждающей жидкости в системе обеспечивается центробежным насосом. В обиходе центробежный насос называют помпой. Центробежный насос может иметь различный привод: шестеренный, ременной и др. На некоторых двигателях (турбонаддув, непосредственный врпыск) для защиты от перегрева устанавливается дополнительный насос циркуляции охлаждающей жидкости, подключаемый блоком управления двигателем. Термостат предназначен для регулировки количества охлаждающей жидкости, проходящей через радиатор, чем обеспечивается оптимальный температурный режим в системе. Термостат устанавливается в патрубке между радиатором и «рубашкой охлаждения» двигателя. На мощных двигателях устанавливается термостат с электрическим подогревом, который обеспечивает двухступенчатое регулирование температуры охлаждающей жидкости. Для этого в конструкции термостата предусмотрено три рабочих положения: закрытое, частично открытое и полностью открытое. При полной нагрузке на двигатель с помощью электрического подогрева термостата производится его полное открытие. При этом температура охлаждающей жидкости снижается до 90°С, уменьшается склонность двигателя к детонации. В остальных случаях температура охлаждающей жидкости поддерживается в пределах 105°С. Вентилятор служит повышения интенсивности охлаждения жидкости в радиаторе. Вентилятор может иметь различный привод:

электрический (управляемый электродвигатель);

гидравлический (гидромуфта).

Наибольшее распространение получил электрический привод вентилятора, обеспечивающий широкие возможности для регулирования. Типовыми элементами управления системы охлаждения являются датчик температуры охлаждающей жидкости, электронный блок управления и различные исполнительные устройства. Датчик температуры охлаждающей жидкости фиксирует значение контролируемого параметра и преобразует его в электрический сигнал. Для расширения функций системы охлаждения (охлаждения отработавших газов в системе рециркуляции отработавших газов, регулирования работы вентилятора и др.) на выходе радиатора устанавливается дополнительный датчик температуры охлаждающей жидкости. Сигналы от датчика принимает электронный блок управления и преобразует их в управляющий воздействия на исполнительные устройства. Используется, как правило, блок управления двигателем с устанавленным соответствующим программным обеспечением.

нагреватель термостата;

реле дополнительного насоса охлаждающей жидкости;

блок управления вентилятором радиатора;

реле охлаждения двигателя после остановки.

Принцип работы системы охлаждения

Работу системы охлаждения обеспечивает система управления двигателем. В современных двигателях алгоритм работы реализован на основе математической модели, которая учитывает различные параметры (температуру охлаждающей жидкости, температуру масла, наружную температуру и др.) и задает оптимальные условия включения и время работы конструктивных элементов. Охлаждающая жидкость в системе имеет принудительную циркуляцию, которую обеспечивает центробежный насос. Движение жидкости осуществляется через «рубашку охлаждения» двигателя. При этом происходит охлаждение двигателя и нагрев охлаждающей жидкости. Направление движения жидкости в "рубашке охлаждения" может быть продольным (от первого цилиндра к последнему) или поперечным (от выпускного коллектора к впускному).

движется по малому кругу, минуя радиатор. Термостат при этом закрыт. По мере нагрева охлаждающей жидкости термостат открывается, и охлаждающая жидкость движется по большому кругу – через радиатор. Нагретая жидкость проходит через радиатор, где охлаждается встречным потоком воздуха. При необходимости жидкость охлаждается потоком воздуха от вентилятора. После охлаждения жидкость снова поступает в «рубашку охлаждения» двигателя. В ходе работы двигателя цикл движения охлаждающей жидкости многократно повторяется. Для лучшего охлаждения на автомобилях c непосредственным впрыском топлива и турбонаддувом применяется двухконтурная система охлаждения. На некоторых моделях бензиновых двигателей с непосредственным впрыском топлива и двигателях, оснащенных турбонаддувом, применяется двухконтурная система охлаждения. Данный вид системы охлаждения предназначен для эффективного охлаждения двигателя за счет создания разных температур в контурах охлаждения. Не следует путать двухконтурную систему охлаждения с работой системы охлаждения управления по большому и малому кругу. Известно, что степень наполнения камер сгорания воздухом зависит от его температуры. Охлаждение воздуха на впуске обеспечивает лучшее наполнение камер сгорания, качественное смесеобразование, а также стойкость двигателя к детонации. Это особенно актуально для двигателей с непосредственным впрыском топлива и двигателей с турбонаддувом. Поэтому для них была разработана двухконтурная система охлаждения. Стандартная система охлаждения поддерживает температурный режим двигателя в пределе 105°С. Двухконтурная система охлаждения обеспечивает температуру в головке блока цилиндров в пределе 87°С, в блоке цилиндров – 105°С. Это достигнуто путем циркуляции охлаждающей жидкости по двум контурам охлаждения, регулируемым двумя термостатами. Так как в контуре головки блока цилиндров должна поддерживаться более низкая температура, то в нем циркулирует больший объем охлаждающей жидкости (порядка 2/3 от общего объема). Остальная охлаждающая жидкость циркулирует в контуре блока цилиндров. Для обеспечения равномерного охлаждения головки блока цилиндров циркуляция охлаждающей жидкости в ней производится по направлению от выпускного коллектора к впускному. Такая схема работы называется поперечным охлаждением. Высокая интенсивность охлаждения головки блока цилиндров сопровождается высоким давлением охлаждающей жидкости. Это давление вынужден преодолевать термостат при открытии. Для облегчения работы в конструкции системы охлаждения применяется термостат с двухступенчатым регулированием. Тарелка такого термостата состоит из двух взаимосвязанных частей: малой и большой тарелки. Вначале открывается малая тарелка, которая затем поднимает большую тарелку.

Принцип работы двухконтурной системы охлаждения двигателя

Управление работой системы охлаждения осуществляет система управления двигателем.

При запуске двигателя оба термостата закрыты. Обеспечивается быстрый прогрев двигателя. Охлаждающая жидкость циркулирует по малому кругу контура головки блока цилиндров: от насоса через головку блока цилиндров, теплообменник отопителя, масляный радиатор и далее в расширительный бачек. Данный цикл осуществляется до достижения охлаждающей жидкостью температуры 87°С. При температуре 87°С открывается термостат контура головки блока цилиндров и охлаждающая жидкость начинает циркулировать по большому кругу: от насоса через головку блока цилиндров, теплообменник отопителя, масляный радиатор, открытый термостат, радиатор и далее через расширительный бачек. Данный цикл осуществляется до достижения охлаждающей жидкостью в блоке цилиндров температуры 105°С. При температуре 105°С открывается термостат контура блока цилиндров и в нем начинает циркулировать жидкость. При этом в контуре головки блока цилиндров поддерживается температура на уровне 87°С.

Неисправности системы охлаждения

При работе двигателя система охлаждения обеспечивает оптимальный температурный режим. Неисправности системы охлаждения приводят к нарушению температурного режима. Различают следующие неисправности системы охлаждения:

неисправности термостата;

приводе);

трещины в рубашке охлаждения головки блока или блоке цилиндров;

неисправность датчика температуры;

неисправность указателя температуры;

низкий уровень охлаждающей жидкости.

Основными причинами неисправностей системы охлаждения являются:

нарушение правил эксплуатации двигателя (применение некачественной охлаждающей жидкости, нарушение периодичности ее замены);

предельный срок службы элементов системы;

неквалифицированное проведение работ по техническому обслуживанию и ремонту системы. Возникающие неисправности системы охлаждения могут послужить причинами более серьезных неисправностей. Так, загрязнение наружной поверхности радиатора приводит к увеличению температуры охлаждающей жидкости и дальнейшему перегреву двигателя. Это, в свою очередь, может привести к прогоранию прокладки и короблению головки блока цилиндров, а также появлению трещин.

Внешними признаками неисправностей системы охлаждения являются:

перегрев двигателя;

наружная утечка охлаждающей жидкости;

внутренняя утечка охлаждающей жидкости.

Для того, чтобы не пропустить зарождающуюся неисправность водитель должен систематически следить за показаниями указателя температуры на панели приборов. Многие автомобили вместе с указателем оснащены сигнальной лампой.

Наружные утечки сопровождаются появлением специфического запаха антифриза, а также подтеками под автомобилем и на двигателе.

прогреве двигателя и в холодное время года белый дым - нормальное явление. Другим проявлением внутренней утечки является наличие охлаждающей жидкости в масле. Определяется путем осмотра масляного щупа. В результате соединения масла и охлаждающей жидкости образуется масляно-водная эмульсия – пена светлого цвета.

Необходимо отметить, что и наружные и внутренние утечки приводят к нарушению температурного режима и перегреву двигателя.

Внешние признаки и соответствующие им неисправности системы охлаждения

перегрев двигателя

низкий уровень охлаждающей жидкости;

нарушение герметичности водяного насоса;

неисправности термостата;

засорение сердцевины радиатора;

загрязнение наружной поверхности радиатора;

переохлаждения двигателя

неисправность термостата;

неисправность привода вентилятора;

неисправность указателя температуры;

неисправность датчика температуры

наружная утечка охлаждающей жидкости

повреждение патрубков;

нарушение герметичности центробежного насоса;

нарушение герметичности радиатора;

трещины в рубашке охлаждения;

трещины в рубашке охлаждения;

на шесть групп: А, Б, В, Г, Д, Е. Масла групп А, Б, В, Г используются в нефорсированных (А), малофорсированных (Б), средне-форсированных (В) и высокофорсированных (Г) карбюраторных и дизельных двигателях. Масла группы Д предназначены для использо­вания в высокофорсированных дизелях, работающих в тяжелых условиях. Масла группы Е — в высокофорсированных мапооборотных судовых дизелях и работающих на тяжелом топливе. Для карбюраторных двигателей в маркировку масла вводится цифра 1, для дизелей — 2. Пример обозначения масел: М-8Г1 М-10В2. Буква М обозначает, что масло моторное; цифры 8 и 10 — значение кинематической вязкости в мм2/с при 100°С. В маркировке масла встречается и более сложное обозначение. При отсутствии масла необходимой марки его можно заменить равновязким по качеству группой выше, но никогда не следует заменять маслами худшего качества. Например, при отсутствии масла M-8B-I следует заливать масло М-8Г1(зимой), М-12Г1(летом) или всесезонное масло М-5з/10Г1 и другие этого типа. Нельзя смешивать масла разных групп (из-за несовместимости присадок), т. е. при понижении уровня масла в картере доливать масло другой группы. Например, долив масла группы Г1 в масло M-8B1 приводит к резкому ухудшению качества (ниже M-8B1), хотя доливалось более высококачественное масло. Поэтому не следует смешивать одинаковые по назначению, но разной маркировки • масла, например, не смешивать масла М-53/10Г1, М-63/1ОГ1 и М-63/12Г1, так как в состав этих масел входят различные присадки. Из отечественных масел для современных двигателей легковых автомобилей-используют М-8Г1 (зимой), М-12Г2 (летом) и всесезонные масла М-5з/10Г1, М-6з/10Г1 и М-6з/12Г1. Как видим, ассортимент невелик. Появляются новые масла с импортными присадками (кроме тех, о которых уже шла речь), например, Apian SAE 15W40 API SE/CC (для старых марок автомобилей) и ApiaH SAE 15W40 API SF/CO (для современных высокофорсированных автомобилей без турбонаддува). В бензиновые двигатели не следует заливать дизельные масла. Как уже отмечалось, при производстве масел учитываются конкретные условия их эксплуатации: температура, давление, металлы, с которыми контактирует масло, качество топлива, охлаждение двигателя и другие. В соответствии с этим подбираются масляная основа определенного качества и соответствующие присадки. Для масел бензиновых двигателей нужны более термостойкие присадки (температура горящей рабочей смеси в бензиновых двигателях на 300... 400°С выше, чем в дизелях), а для дизельных масел —механостойкие. Кроме того, учитывается качество топлива. Содержание серы в дизельном топливе в 5... 10 раз больше, чем в бензине. При сгорании сернистые соединения превращаются в оксиды, которые со временем вызывают не только жидкостную (кислотную) коррозию при соединении с водой, но и газовую. Поэтому масла для дизелей Должны иметь более высокие нейтрализующие свойства для предотвращения коррозии — в первую очередь вкладышей подшипников — продуктами сгорания топлива и окисления масла. . Но, к сожалению, улучшение нейтрализующих свойств сопряжено с повы­шением зольности. Особенно это ощущается, когда дизельное масло используется в бензиновых двигателях, при попадании в камеру сгорания (расход масла на угар). В этих случаях масляная основа и присадки более интенсивно, чем в дизелях, образуют нагары, вызывают калильное зажигание (двигатель продолжает работать при выключенном зажигании). Калильное зажигание может сопровождаться детонацией (возникновением металлического стука при работе двигателя), так как образующиеся нагары "уменьшают" объем камеры сгорания, т. е. увеличивают степень сжатия двигателя. Поэтому существует классификация моторных масел для карбюраторных и дизельных двигателей, высокофорсированных, высокофорсированных с турбонаддуврм и т. д.

Вывод: Я ознакомился с особенностями строения двигателя грузовых дизельных, газобаллонных и специальных автомобилей легковых, импортных автомобилей, автобусов, грузовых пикапов.