Меню
  Список тем
  Поиск
Полезная информация
  Краткие содержания
  Словари и энциклопедии
  Классическая литература
Заказ книг и дисков по обучению
  Учебники, словари (labirint.ru)
  Учебная литература (Читай-город.ru)
  Учебная литература (book24.ru)
  Учебная литература (Буквоед.ru)
  Технические и естественные науки (labirint.ru)
  Технические и естественные науки (Читай-город.ru)
  Общественные и гуманитарные науки (labirint.ru)
  Общественные и гуманитарные науки (Читай-город.ru)
  Медицина (labirint.ru)
  Медицина (Читай-город.ru)
  Иностранные языки (labirint.ru)
  Иностранные языки (Читай-город.ru)
  Иностранные языки (Буквоед.ru)
  Искусство. Культура (labirint.ru)
  Искусство. Культура (Читай-город.ru)
  Экономика. Бизнес. Право (labirint.ru)
  Экономика. Бизнес. Право (Читай-город.ru)
  Экономика. Бизнес. Право (book24.ru)
  Экономика. Бизнес. Право (Буквоед.ru)
  Эзотерика и религия (labirint.ru)
  Эзотерика и религия (Читай-город.ru)
  Наука, увлечения, домоводство (book24.ru)
  Наука, увлечения, домоводство (Буквоед.ru)
  Для дома, увлечения (labirint.ru)
  Для дома, увлечения (Читай-город.ru)
  Для детей (labirint.ru)
  Для детей (Читай-город.ru)
  Для детей (book24.ru)
  Компакт-диски (labirint.ru)
  Художественная литература (labirint.ru)
  Художественная литература (Читай-город.ru)
  Художественная литература (Book24.ru)
  Художественная литература (Буквоед)
Реклама
Разное
  Отправить сообщение администрации сайта
  Соглашение на обработку персональных данных
Другие наши сайты
Приглашаем посетить
  Русский язык (rus-yaz.niv.ru)

   

Автоматизированный электропривод

Автоматизированный электропривод

Расчётно-пояснительная записка к курсовому проекту по дисциплине «Автоматизированный электропривод»

Тема: Разработать электропривод механизма передвижения мостового крана.

Выполнил студент: Барулин Ю. В.

Российский химико-технологический университет имени Д. И. Менделеева.

Новомосковский институт

Кафедра «Электротехники»

Новомосковск 2004 г.

Задание

Разработать электропривод механизма передвижения мостового крана.

Механизм включает двигатель постоянного тока, торможение включением сопротивления в цепь якоря. Вращение ротора двигателя передаётся через редуктор ходовым колесом, имеющем диаметр D=0. 4м и цапф Dц=0,008м. Тележка перемещает кран с грузом mг=28 т на расстоянии перемещения L=18 м, скорость передвижения v=19 м/мин, а вес самой тележки mт=6 т, К. П. Д. передач механизма n=0,65.

Кроме того, при расчёте электропривода задаются продолжительностью включения ПВ=34% и приведённым к валу двигателя моментом энерции механизма I1=25% от момента инерции ротора электродвигателя.

Цикл работы тележки включает перемещение груза на расстояние и возвращение назад без груза. Разработать схему управления, которая должна обеспечивать ступенчатый пуск, электрическое торможение, снижение скорости перед остановкой до (20-30)% от номинальной, фиксацию механизма электромеханическим тормозом при отключении двигателя от сети.

Дата выдачи задания

Введение

в производственных процессах. Производственные механизмы, без которых нельзя в настоящее время представить себе ни одно производство прошли длительный путь своего развития, прежде чем приняли вид современного автоматизированного электропривода, приводящего в движение бесчисленное множество рабочих машин и механизмов в промышленности, транспорте, в сельском хозяйстве и в бытовой технике и автоматически управляющего их технологическими процессами.

Он состоит из трёх частей: электрического двигателя, осуществляющего электромеханическое преобразование энергии, механической части, передающей механическую энергию рабочему органу машины, и системы управления, обеспечивающей оптимальное по тем или иным критериям управление технологическим процессом. Диапазон изменения номинальных частот вращения электропривода имеет весьма широкие пределы. Использование средств дискретной техники в системах управления приводами постоянно тока расширяет диапазон регулирования скорости до (1000-1500:1 и выше. Нельзя представить себе ни одного современного производственного механизма, в любой области техники, который не приводился бы в действие автоматизированным электроприводом. В электроприводе основным элементом, непосредственно преобразующим электрическую энергию в механическую является электрический двигатель, который чаще всего управляется при помощи соответствующих преобразовательных и управляющих устройств с целью формирования статистических и динамических характеристик электропривода, отвечающих требованиям производственных механизмов.

Речь идёт об обеспечении с помощью автоматизированного электропривода оптимального режима работы машин, при котором достигается наибольшая производительность при высокой точности.

Многообразие производственных процессов обуславливает различные виды и характеры движения рабочих органов машины, а следовательно, и электроприводов. По виду движения электроприводы могут обеспечить: вращательное однонаправленное движение, вращательное реверсивное и поступательное реверсивное движение. Характеристики двигателя и возможности системы управления определяют производительность механизма, точность выполнения технологических операций.

Свойства электромеханической системы оказывают решающее влияние на важнейшие показатели рабочей машины и в значительной мере определяют качество и экономическую эффективность технологических процессов. Развитие автоматизированного электропривода ведёт к совершенствованию конструкций машин, к коренным изменениям технологических процессов, к дальнейшему прогрессу во всех отраслях народного хозяйства, поэтому теория электропривода- техническая наука, изучающая общие свойства электромеханических систем, законы управления их движением и способы синтеза таких систем по заданным показателям имеет важнейшее практическое значение.

Системы автоматического управления электроприводами постоянного и переменного тока, в которых используются все достижения полупроводниковой техники, а так же возможности электронной вычислительной техники, позволяют существенно упростить конструкции производственных механизмов, повысить их точность и поднять производительность, т. е. способствовать техническому прогрессу. Широкая автоматизация механизмов на базе следящих систем электроприводов, систем с цифровым программным управлением и средств комплексной автоматизации – обширная и весьма важная развивающаяся область автоматизированного электропривода.

1. Расчёт статистических нагрузок и мощности ДТП

1. 1Статистическая нагрузка при движении тележки с грузом

Рс1=кg(mт+mг) (мDц/2+f)v/nD/2

где к-коэффициент, учитывающий трение

(к=1,2 1,3). Принимаем к=1,25

g-ускорение свободного падения, Н*м2;

f-коэффициент трения качения. Принимаем в зависимости от диаметра колеса. принимаем f=0. 0005

Dц-диаметр цапфа;

V-скорость передвижной тележки, м/с;

D-диаметр колёс, м;

n-номинальный КПД передачи механизма.

Рс1=1,25*9,81(6000+28000)(0,25*0,08/2+0,0005)*0,32/0,65*0,4/2=10776Вт=10,78кВт

Мощность двигателя при движении тележки без груза определяется аналогично, с учётом что mг=0

Рс2=кgmт(мDц/2+f)V/n*D/2

Рс2=1,25*9,81*6000(0,25*0,08/2+0,0005)*0,32/0,65*0,4/2=1902Вт=1,9кВт

Время работы с грузом и без груза

tp1=tp2=L/V,

где L-расстояние перемещения, м

tp1=tp2=18/0. 32=56. 8c

Время цикла при заданной продолжительности включения

tц=(tp1+tp2)*100% / ПВ%?

где ПВ% заданная продолжительность включения

tц=(56,8+56,8)*100% / 34%=334 c

Время пауз

tп1=tп2=(334-(56,8+56,8))/2=110,2с

Эквивалентная среднеквадратичная мощность за время работы

Рэ= (Р2с1*tp1+P2c2*tp2)/(tp1+tp2)

Рэ= (10,782*56,8+1,92*56,8)/(56,8+56,8) =7,74кВт

Pэк=Кз*Рэ* ПВ/ПВст ,

ПВст-стандартная продолжительность включения, ПВст=40%

Рэк=1,2*7,74 34/40 =8,56 кВт

Выбор двигателя постоянного тока (ДПТ)

Согласно [4] номинальная мощность выбираемого двигателя должна быть эквивалентной мощности,

Рэк >Рэн. Выбираем D32

Рном=12кВт; nном=800 мин-1; Uном=220В; Кa =0. 28 Ом;

Iном=57А; Iв=1,85А; Р при ПВ=40%=9,5кВт; Iдв=0,425кг*м2

Номинальная угловая скорость

wн=2пn/60,

где n-номинальная частота вращения,

Передаточное отношение редуктора

ip=(wн*D/2)/V*60

ip=(83. 37*0. 4/2)/0. 32*60=0. 87

2. 1 Построение соответственных электромеханических характеристик.

Механические характеристики для ДТП с параллельным возбуждением представляют собой прямые линии, поэтому для их построения достаточно определить координаты 2-х точек: номинального режима и холостого хода

Номинальный момент

Мн=Рн/wн,

Мн=12000/83,73=133,46 Н*м

Для холостого хода момент принимается равным нулю, М0=0.

Скорость находится из выражения

w0=Uн/КФ,

где КФ=(Uн-Iн*Ra )/wн,

где Uн-номинальное напряжение при ПВ%ст,В;

Iн-номинальный ток, А;

Ra -суммарное сопротивление якоря, Ом.

w0=220/2. 44=90. 16

Эти характеристики представлены на рисунке 4.

Мс1=Рс1/wн

Мс1=10,78/83,37=128,7 Н*м

Мс2=1,9/83,73=22,71 Н*м

2. 3 Для построения пусковых реостатных характеристик задаемся моментами переключения

М1=(2 3)Мн

М1=(2 3)*133,6=226,92 340,38 Н*м

М2>(1. 1 1. 2)Мн

М2>(1,1 1,2)*133,46>124,81 156,12 Н*м

П =М1/Мн

П=(226,92 34,38)/133,46=2 3

Ra=Ra /Rном=0,28/3,86=0,0725

М2= Пz Ra*П

М2=М2*Мн

Выбранные значения П и z соответствуют выполнению условия М2>(1,1 1,2)Мн

При типе торможения В строим тормозные характеристики, проводя прямые через точку w0 и пересечение линии Мс и точкой 0,2wн

2. 5 Расчёт пусковых и тормозных резисторов

R2=Rном*cd/af=3. 86*16/92=0. 67

Rт1=Rном*de/af=3. 86*32/92=1. 34

3. Расчет переходных процессов при пуске и торможении электропривода

3. 1 Расчёт переходных процессов при движении тележки с грузом

Тм=Iw0/Mкз=I w/ M

Iг=Iдв+(I1/100%)Iдв+mг(V/wдв)2

где Iдв-момент инерции двигателя, кг*м2

I1-момент инерции механизмов, приведённой к валу, %

V-скорость движения тележки, м/с

wдв-частота вращения двигателя, об/мин

Iг=0,425+(25/100)*0,425+34000(0,32/800)2=0,54

w=(wнас-wуст)e-t/Tм+wуст

Тм1=Iг*w2/(V1-V2)

wнач=0 ; wуст=w7=54

Мнач=320; Муст=128,7

Тм1=0,54*47/(320-158,7)=0,16

M=(320-128. 7)e-t/0. 16+128. 7

t 0 0,1 0,2 0,3
w 0 25,1 38,5 47
M 320 231,1 183,5 158,7

участок 3-4

wнач=w2=47; wуст=w8=73

Mнач=320=M1; Mуст=Mc1=128. 7

Tм2=I(w4-w2)/(M1-M2)

Tм2=0. 54(70-47)/(320-158. 7)=0. 08

w=(w2-w8)e-t/Tм2++w8

w=(47-73)e-t/0. 08+73

М=(М1-Мс1)е-t/0,08+Мс1

М=(320-128,7)е-t/0. 08+128. 7

11 этап разгона

t 0 0,1 0,2
w 47 65,5 70
M 320 183,5 158,7

участок 5-6

wнач=w4=70; wуст=w6=83

Mнач=M1=320; Mуст=Mc1=128. 7

Tм3=0. 54(83-70)/(320-128. 7)=0. 04

w=(w4-w6)e-t/Tм3+w6

M=(M1-Mc1)e-t/Tм3+Mc1

M=(320-128. 7)e-t/0. 04+128. 7

Результаты расчета сводим в таблицу

wнач=w2=-47; wуст=w8`=-88

Mнач=-M1=-320; Mуст=-Mc2=-22,7

Tм2`=I/(w4`-w2`)/(-M1+M2)

w=84e-t/0. 15-84

M=(-M1+Mc2)e-t/Tм1-Mc2

M=(-320+22,7)e-t/0. 15-22,7

Результаты вычислений сводим в таблицу

Выход на естественную характеристику

t 0 0,1 0,2
w 70 82 83
M 320 144,4 128,8

участок 9-10

wнач=w9=83; wуст=w10=17

Mнач=M9=14; Mуст=Mc1=128. 7

Tм4=Iг(w10-w9)/(M9-Mc1)

Tм4=0. 54(17-83)/(14-128. 7)=0. 34

w=(w9-w10)e-t/Tм4+w10

M=(M9-Mc1)e-t/Tм4+Mc1

M=(14-128. 7)e-t/0. 34+128. 7

Результаты вычислений сводим в таблицу

t 0 1 2
w 83 20,5 17,2
M 14 122,6 128,4

3. 2 Расчёт переходных процессов при движении тележки без груза

I=Iдв+(I1/100%)Iдв+m(V/wдв)2

m-масса тележки с грузом, кг

Рассмотрим переходный процесс при движении тележки без груза по участкам

участок 1`-2`

wнач=0; wуст=w7=-84

Mнач=-M1=14; Mуст=-Mc2=-22,7

Tм1=Iw2/(-M1+M2)

w=(wнач-w7)e-t/Tм1+w7

w=84e-t/0. 15-84

M=(-M1+Mc2)e-t/Tм1-Mc2

M=(-320+22,7)e-t/0. 15-22,7

Результаты вычислений сводим в таблицу

1 этап разгона

t 0 0,1 0,2
w 0 -40,8 -47
M -320 -175,3

участок 3`-4`

Mнач=-M1=-320; Mуст=-Mc2=-22,7

Tм2`=0. 53(-47)/(-320+158,7)=0. 15

w=(w2-w8)e-t/Tм`+w8

w=(-47+88)e-t/0. 15-88

M=(-M1+Mc2)e-t/Tм2`-Mc2

M=(-320+22,7)e-t/0. 075-22,7

Результаты вычислений сводим в таблицу

11 этап разгона

t 0 0,1 0,06
w -47 -77,2 -70
M -320 -101,1 -158,6

участок 5`-6`

wнач=w4`=-70; wуст=w6`=-90

Tм3`=I/(w6`-w4`)/(-M1+Mc2)

w=(w4`-w6`)e-t/Tм3`+w6`

M=(-320+22,7)e-t/0. 035-22,7

Выход на естественную характеристику

t 0 0,1 0,2
w -70 -89,3 -90
M -320 -33,3 -22,7

участок 5`-6`

wнач=w9`=-90; wуст=w10`=-17

Mнач=M9`=-2; Mуст=-Mc2=-22,7

Tм4`=I/(w9`-w10`)/(-Mc2+M9`)

Tм4`=0. 53(-90+17)/(-22. 7+2)=1. 8

w=(w9`-w10`)e-t/Tм4`+w10`

M=(-2+22,7)e-t/1. 8-22,7

этап торможения

t 0 1 2 3 4 5 6 7
w -90 -58,9 -41,03 -30,8 -25 -21,5 -19,8 -17,1
M -2 -10,8 -15,9 -18,8 -20,5 -21,4 -22 -22,7

4. Строим нагрузочные диаграммы для проверки двигателя по нагреву

Движения тележки с грузом

SOAB=1/2*(110/60)*0. 7=0. 64 рад

Lпуск=SОАВ*D/2*ip

где D-диаметр ходовых колёс, м

ip-передаточное отношение редуктора

Lпуск=0,64*0,4/2*0,87=0,15 м

SCFGD=SCKE+SEFGD

SEFGD=ED*DG

SEFGD=(16/60)*3+0. 8 рад

SCFGD=0. 56+0. 8=1. 36 рад

Lторм г=SCFGD*D/2*ip

Lторм г=1. 36*0. 4/2*0. 87=0. 31 м

Lуст. г=L-(Lпуск. г+Lторм г)

Lуст. г=18-(0. 15+0. 31)=17. 54 м

Определяем установившееся время работы при движении тележки с грузом

tуст. г=Lуст. г/V

tуст. г=17. 54/0. 32=54. 8 с

Движение тележки без груза

SOAB=1/2AB*OB

SOAB=1/2(110/60)0. 4=0. 37 рад

Lпуск. б/г=SOAB*D2*ip

где Lпуск-расстояние, на которое перемещается тележка

Lпуск б/г=0,37*0,4/2*0,87=0,08 м

SCDEF=SKDG+SCKFE

SKDG=1/2KD*CE

SKDG=1/2(73/60)*3. 6=2. 19 рад

SCKFE=CK*CE

SCKFE=(17/60)*7=1. 98 рад

SCDEF=2. 19+1. 98=4. 17 рад

Lторм г=SCDFE*D/2*ip

Lторм г=4. 17*0. 4/2*0. 87=0. 96 м

Lуст. г=L-(Lпуск. б/г+Lторм б/г)

Определяем установившееся время работы при движении тележки без груза

tуст. г=Lуст. б/г/V

tуст. б/г=16,96/0. 32=53 с

Проверка двигателя по нагреву осуществляется методом эквивалентного момента, который определяется по нагрузочной диаграмме при работе тележки с грузом и без груза

Мэкв= М i2*ti/ ti<Mном

Мi= (Mнач2+Мнач*Мкон+Мкон2)/3

участок 1-2

Мi= (M12+M1*M2+M22)/3= (3202+320*158. 7+158. 72)/3=243. 84

участок 3-4

Мi= (M12+M1*M2+M22)/3= (3202+320*158. 7+158. 72)/3=243. 84

участок 5-6

Мi= (M12+M1*Mс1+Mс12)/3= (3202+320*128. 7+128. 72)/3=231. 05

участок 9-10

Мi= (M92+M9*Mс1+Mс12)/3= (142+14*128. 7+128. 72)/3=78,66

Муст=128,7

участок 1`-2`

участок 3`-4`

Мi= (M12+M1*M2+M22)/3= (3202+320*158. 7+158. 72)/3=243. 84

участок 5`-6`

Мi= (M12+M1*Mс2+Mс22)/3= (3202+320*22,7+22,72)/3=191,64

участок 9`-10`

Муст=22. 7

Мэкв= 243,842*0,3+243,842*0,2+231,052*0,2+78,662*3+128,72*54,8+243,842*0,13+

+243,842*0,6+191,642*0,2+13,722*7+22,72*53/119,43=93,59

Мэкв<Мном=133,46 Н*м

Мном*ПВном>Мэкв ПВэкв/ПВном

Мном*ПВном=Рном*ПВном/wном=9500/83,37=113,47 Н*м

Мэкв ПВэкв/ПВном = 93,59 34/40=86,29< Мном*ПВном

Двигатель проходит по нагреву

5. Проектирование релейно-контакторной схемы управления двигателем постоянного тока.

а) Для осуществления реверса предусматриваем в силовой схеме подключение якоря электрической машины к сети через замыкающие контакты контакторов направления (КМ1-контакор «вперёд», КМ2-контактор « назад»), включённые в мостовую схему. В зависимости от того , какие контакты (КМ1 или КМ2) замкнуты, меняется полярность подводимого к якорю напряжения, следовательно, меняется направление вращения двигателя.

б) С целью осуществления двухступенчатого пуска включаем последовательно в цепь якоря два добавочных резистора (Rg1 и Rg2). Для коммутации резисторов (при переходе с одной пусковой характеристики на другую) параллельно им устанавливаем замыкающие контакты контакторов ускорения КМ3 и КМ4.

в) В цепи якоря устанавливаем катушку реле КА2 для максимальной токовой защиты и катушку реле нулевого тока КА1 в цепи обмотки возбуждения двигателя ОВ (для контроля за наличием тока в цепи ОВ (или для контроля за снижением этого тока ниже допустимого уровня).

Далее в силовой схеме для управления этой схемой предусматриваем командоконтроллёр. Автоматизация процесса пуска осуществляется в функции времени. Функцию минимальной защиты осуществляет включаемое в схему реле напряжения KV1. В случае снижения напряжения сети ниже допустимого уровня (0,8-0,85 Uном) исчезает напряжение реле KV1 отпадает к своим замыкающим контактом KV1:1 отключает схему управления, что приводит к отключения силовой схемы от сети и к фиксации механизма с помощью технического тормоза, так как катушка электромагнита тормозного устройства КМ5 в этом случае теряет питание.

Повторное включение электропривода в работу после срабатывания любого вида защит возможно только после установки командоконтроллёра в нулевое положение.

остался не в нулевом положении.

В цепи катушек контакторов направления КМ1 и КМ2 введены размыкающие контакты конечных выключателей SQ1 и SQ2, чтобы в случае, когда перемещаемый механизм выходит за допустимые границы перемещения, механизм специальным упором нажимает на рычаг конечного выключателя SQ1 или SQ2. Последний своим размыкающим контактом снимает питание с катушки соответствующего контактора направления, в результате двигатель отключается от сети. Одновременно снимается питание с катушки электромагнитного тормоза КМ5. При этом механизм фиксируется в неподвижном состоянии механическим тормозом.

Для осуществления электрического торможения типа В в схеме предусматриваем последовательное включение двух тормозных резисторов Rт1 и Rт2(для осуществления торможения устанавливаем параллельно резисторам размыкающий контакт КМ6:2, контактора КМ6). Тормозные резисторы устанавливаются в цепи якоря.

Список литературы

1. Чиликин М. Г., Ключев В. И. «Теория автоматизированного электропривода». М.:Энергия. 1979

2. Чиликин М. Г., «Общий курс электропривода». М: Энергоиздат 1981

3. Методические указания по курсовому проектированию дисциплины «Автоматизированный электропривод». Бабокин Г. И., г. Новомосковск

4. Яуре А. С., Певзнер Е. М. «Крановой электропривод»