Меню
  Список тем
  Поиск
Полезная информация
  Краткие содержания
  Словари и энциклопедии
  Классическая литература
Заказ книг и дисков по обучению
  Учебники, словари (labirint.ru)
  Учебная литература (Читай-город.ru)
  Учебная литература (book24.ru)
  Учебная литература (Буквоед.ru)
  Технические и естественные науки (labirint.ru)
  Технические и естественные науки (Читай-город.ru)
  Общественные и гуманитарные науки (labirint.ru)
  Общественные и гуманитарные науки (Читай-город.ru)
  Медицина (labirint.ru)
  Медицина (Читай-город.ru)
  Иностранные языки (labirint.ru)
  Иностранные языки (Читай-город.ru)
  Иностранные языки (Буквоед.ru)
  Искусство. Культура (labirint.ru)
  Искусство. Культура (Читай-город.ru)
  Экономика. Бизнес. Право (labirint.ru)
  Экономика. Бизнес. Право (Читай-город.ru)
  Экономика. Бизнес. Право (book24.ru)
  Экономика. Бизнес. Право (Буквоед.ru)
  Эзотерика и религия (labirint.ru)
  Эзотерика и религия (Читай-город.ru)
  Наука, увлечения, домоводство (book24.ru)
  Наука, увлечения, домоводство (Буквоед.ru)
  Для дома, увлечения (labirint.ru)
  Для дома, увлечения (Читай-город.ru)
  Для детей (labirint.ru)
  Для детей (Читай-город.ru)
  Для детей (book24.ru)
  Компакт-диски (labirint.ru)
  Художественная литература (labirint.ru)
  Художественная литература (Читай-город.ru)
  Художественная литература (Book24.ru)
  Художественная литература (Буквоед)
Реклама
Разное
  Отправить сообщение администрации сайта
  Соглашение на обработку персональных данных
Другие наши сайты
Приглашаем посетить
  Html (html.find-info.ru)

   

Ветроэнергетика в России

Энергия ветра — это преобразованная энергия солнечного излучения, и пока светит Солнце, будут дуть и ветры. Таким образом, ветер — это тоже возобновляемый источник энергии.

Люди используют энергию ветра с незапамятных времен — достаточно вспомнить парусный флот, который был уже у древних финикян и живших одновременно с ними других народов, и ветряные мельницы. В принципе, преобразовать энергию ветра в электрический ток, казалось бы, нетрудно — для этого достаточно заменить мельничный жернов электрогенератором. Ветры дуют везде, они могут дуть и летом, и зимой, и днем, и ночью — в этом их существенное преимущество перед самим солнечным излучением. Поэтому вполне п9нятны многочисленные попытки "запрячь ветер в упряжку" и заставить его вырабатывать электрический ток.

ВЭС мощностью 100 кВт, которая была по тем временам самой крупной ВЭС в мире. Она успешно проработала до 1942 г., но во время войны была разрушена. В настоящее время в СССР выпускаются серийные ветроагрегаты мощностью 4 и 30 кВт и готовятся к выпуску более мощные установки 100 и даже 1000 кВт. Делаются первые шаги по пути перехода от единичных автономных ВЭС к системам связанных в единую сеть многих ветроагрегатов большой мощности. Первая такая система должна быть сооружена около поселка Дубки в Дагестане.

в строй ВЭС с номинальными мощностями свыше 1 МВт

Ветроэнергетические установки (ВЭУ) достигли сегодня уровня коммерческой зрелости и в местах с благоприятными скоростями ветра могут конкурировать с традиционными источниками электроснабжения. Из всевозможных устройств, преобразующих энергию ветра в механическую работу, в подавляющем большинстве случаев используются лопастные машины с горизонтальным валом, устанавливаемым по направлению ветра. Намного реже применяются устройства с вертикальным валом.

Кинетическая энергия, переносимая потоком ветра в единицу времени через площадь в 1 м2 (удельная мощность потока), пропорциональна кубу скорости ветра. Поэтому установка ВЭУ оказывается целесообразной только в местах, где среднегодовые скорости ветра достаточно велики.

Ветровое колесо, размещенное в свободном потоке воздуха, может в лучшем случае теоретически преобразовать в мощность на его валу 16/27=0,59 (критерий Бетца) мощности потока воздуха, проходящего через площадь сечения, ометаемого ветровым колесом. Этот коэффициент можно назвать теоретическим КПД идеального ветрового колеса. В действительности КПД ниже и достигает для лучших ветровых колес примерно 0,45. Это означает, например, что ветровое колесо с длиной лопасти 10 м при скорости ветра 10 м/с может иметь мощность на валу в лучшем случае 85 кВт.

Наибольшее распространение из установок, подсоединяемых к сети, сегодня получили ветроэнергетические установки (ВЭУ) с единичной мощностью от 100 до 500 кВт. Удельная стоимость ВЭУ мощностью 500 кВт составляет сегодня около 1200 долл/кВт и имеет тенденцию к снижению.

гг. в США были сооружены и испытаны 5 ВЭУ с единичной мощностью 2,5 МВт. Самая большая к тому времени ВЭУ (Гровиан) мощностью 3 МВт была сооружена в Германии в 1984 г., но, к сожалению, она проработала лишь несколько сот часов. Построенные несколько позже в Швеции ВЭУ WTS-3 и WTS-4 мощностью соответственно 5 и 4 МВт были установлены в Швеции и США и проработали первая 20, а вторая 10 тыс. ч.

В Канаде ведутся работы по созданию крупных ветровых установок с вертикальным валом (ротор Дарье). Одна такая установка мощностью 4 МВт проходит испытания с 1987 г. Всего за 1987-1993 гг. в мире было сооружено около 25 ВЭУ мегаваттного класса.

Расчетная скорость ветра для больших ВЭУ обычно принимается на уровне 11-15 м/с. Вообще, как правило, чем больше мощность агрегата, тем на большую скорость ветра он рассчитывается. Однако в связи с непостоянством скорости ветра большую часть времени ВЭУ вырабатывает меньшую мощность. Считается, что если среднегодовая скорость ветра в данном месте не менее 5-7 м/с, а эквивалентное число часов в году, при котором вырабатывается номинальная мощность не менее 2000, то такое место благоприятно для установки крупной ВЭУ и даже ветровой фермы.

Сегодня в некоторых промышленно развитых странах установленная мощность ВЭУ достигает заметных значений. Так, в США установлено более 1,5 млн. кВт ВЭУ, в Дании ВЭУ производят около 3 °/о потребляемой страной энергии; велика установленная мощность ВЭУ в Швеции, Нидерландах, Великобритании и Германии.

По мере совершенствования оборудования ВЭУ и увеличения объема их выпуска стоимость ВЭУ, а значит и стоимость производимой ими энергии снижаются. Если в 1981 г. стоимость электроэнергии производимой ВЭУ, составляла примерно 30 американских центов за кВт./ч, то сегодня она составляет 6-8 центов. С учетом того, что только в 1995 г. в США велись работы по четырем большим ветровым фермам с общей мощностью около 200 МВт, станет ясно, что планируемое Департаментом Энергетики США снижение стоимости ветровой электроэнергии до 2,5 центов/ (кВт. ч) вполне реально [57, 90,94].

В развивающихся странах интерес к ВЭУ связан в основном с автономными установками малой мощности, которые могут использоваться в деревнях, удаленных от систем централизованного электроснабжения. Такие установки уже сегодня конкурентоспособны с дизелями, работающими на привозимом топливе. Однако в некоторых случаях непостоянство скорости ветра заставляет либо устанавливать параллельно с ВЭУ аккумуляторную батарею, либо резервировать ее установкой на органическом топливе. Естественно, это повышает стоимость установки и ее эксплуатации, поэтому распространение таких установок пока невелико.

В России существует значительный нереализованный задел в области ветроэнергетики. Фундаментальные исследования аэродинамики ветряка , осуществленные в ЦАГИ , заложили основу современных ветротурбин с высоким коэффициентом использования энергии ветра. Однако жесткая ориентация на большую гидроэнергетику и угольно-ядерную стратегию и почти полную глухоту к новациям и экологическим проблемам надолго затормозило развити ветроэнергетики. Выпускаемые “ Ветроэном” ветроустановки не отвечали современным требованиям и представлениям высоких технологий ветроэнергетической индустрии. Толчком для дальнейшего продвижения и создания современного ветроэнергетического оборудования стала федеральная научно-техническая программа “Экологически чистая энергетика”[193] . Для участия и получения финансирования были отобраны лучшие проекты ветроэнергетических установок различных классов по мощности. Были разработаны проекты ветроагрегатов мощностью до 30 кВт , 100 кВт, 250 кВт, 1250 кВт.

Начавшаяся перестройка, развал экономики и прекращение финансирования по программе не позволила довести указанные проекты до коммерческого уровня. Почти все проекты остались на уровне опытных и макетных образцов. Опытный образец ветроагрегата мегаваттного класса был спроектирован и построен МКБ “Радуга” , который организовал кооперацию предприятий авиационной промышленности. Разработка, изготовление и строительство финансировалось правительством Калмыкии. Ветроагрегат был построен недалеко от Элисты и успешно работает , вырабатывая 2300-2900 тыс. кВт ч электроэнергии в год. Ветроагрегат подключен к сети. В МКБ “ Радуга” были спроектированы ветроагрегаты мощностью 8кВт и 250 кВт. Российской Ассоциацией развития ветроэнергетики “ Energobalance Sovena” совместно с Германской фирмой Husumer SchiffsWert (HSW) были изготовлены 10 ветроагрегатов сетевого исполнения единичной мощностью 30 кВт. Ветропарк с установленной мощностью 300 кВт был построен в 1996 г. в Ростовской области и запущен в эксплуатацию.

закупка и монтаж зарубежных ветроагрегатов;

организация производства собственных ветроагегатов, ноу-хау которых защищено международным законодательством.

Для России предпочтительней последний сценарий, однако он сдерживается существующим налоговым законодательством, монополией производителей электроэнергии, отсутствием инвестиций и развалом производства.

На примере совершенствования модели ветра можно показать что углубление знаний в этой области позволило приблизиться к адекватной модели преобразования энергии На рис. показаны: использование упрощенной модели ветра с осредненными параметрами по времени и в пространстве до 70 годов, учет изменения скорости ветра по высоте в 75 годы, использование турбулентной модели ветра в 85 годы.

Ветер дует почти всегда неравномерно. Значит, и, генератор будет работать неравномерно, отдавая то большую, то меньшую мощность, ток будет вырабатываться переменной частотой, а то и полностью прекратится, и притом, возможно, как раз тогда, когда потребность в нем будет наибольшей. итоге любой ветроагрегат работает на максимальной мощности лип малую часть времени, а в остальное время он либо работает на пониженной мощности, либо просто стоит.

Для выравнивания отдачи тока применяют аккумуляторы, но это как уже отмечалось, и дорого, и мало эффективно.

Интенсивности ветров сильно зависят и от географии. ВЭС выгодно использовать в таких местах, где среднегодовая скорость ветра выше 3,5—4 м/с для небольших станций и выше 6 м/с для станций большой мощности. В нашей стране зоны с V S: 6 м/с расположены, в основном на Крайнем Севере, вдоль берегов Ледовитого океана, где потребности в энергии минимальны (табл. 7).

Казалось бы, раз ветер дует бесплатно, значит, и электроэнергия от него должна быть дешевой. Но это далеко не так. Дело в том, что строительство большого числа ветроагрегатов требует значительных капитальных затрат, которые входят составной частью в цену производимой энергии. При сравнении различных источников, удобно сопоставлять удельные капиталовложения, т. е. затраты на получения 1 кВт установленной мощности. Для АЭС эти затраты равны примерно 1000 руб/кВт. В то же время, наша ветроустановка АВЭ-100/250, способная при скорости ветра б м/с развивать мощность 100 кВт, стоит 600 тыс руб. (в ценах 1989 г.), т. е. для нее капзатраты составляют 6000 руб./кВт. А если учесть, что ветер не всегда дует с такой скоростью, и что поэтому средняя мощность оказывается в 3-4 раза меньше максимальной, то реальные капзатраты составят порядка 20 тыс. руб./кВт, что в 20 раз выше, чем для АЭС.

ВЭС с точки зрения экологии.

же сотен, тысяч и тем более миллионов ветряков потребовались бы обширные площади в сотни тысяч гектаров. Дело в том, что ветроагрегаты близко друг к другу ставить нельзя, так как они могут создавать взаимные помехи в работе, "отнимая ветер" один от другого. Минимальное расстояние между ветряками должно быть не менее их утроенной высоты. Вот, и считайте сами, какую площадь придется отвести для ВЭС мощностью 4 млн. кВт.

действующие на людей инфразвуковые колебания с частотами ниже 16 Гц. Кроме этого, ветряки распугивают птиц и зверей, нарушая их естественный образ жизни, а при большом их скоплении на одной площадке — могут существенно исказить естественное движение воздушных потоков с непредсказуемыми последствиями. Неудивительно, что во многих странах, в том числе в Ирландии, Англии и других, жители неоднократно выражали протесты против размещения ВЭС вблизи населенных пунктов и сельскохозяйственных угодий, а в условиях густо населенной Европы это означает — везде. Поэтому было выдвинуто предложение о размещении систем ветряков в открытом море. Так, в Швеции разработан проект, согласно которому предполагается в Балтийском море недалеко от берега установить 300 ветряков. На их башнях высотой 90 м будут вращаться двухлопастные пропеллеры с размахом лопастей 80 м. Стоимость строительства только первой сотни таких гигантов потребуется более 1 млрд. долл., а вся система, на строительство которой уйдет минимум 20 лет, обеспечит производство всего 2% электроэнергии от уровня потребления в Швеции в настоящее время. Но это — пока только проект. А тем временем в той же Швеции начато строительство одной ВЭС мощностью 200 кВт на расстоянии 250 м от берега, которая будет передавать энергию на землю по подводному кабелю. Аналогичные проекты были и у нас: предлагали устанавливать ветряки и на акватории Финского залива, и на Арабатской стрелке в Крыму. Помимо сложности и дороговизны подобных проектов, их реализация создала бы серьезные помехи судоходству, рыболовству, а также оказало бы все те же вредные экологические воздействия, о которых говорилось ранее. Поэтому и эти планы вызывают движения протеста. Например, шведские рыбаки потребовали пересмотра проекта строящейся в море ВЭС, так как, по их мнению, подводный кабель, да и сама станция будут плохо влиять на рыб, в частности — на угрей, мигрирующих в тех местах вдоль берега.

Из всего сказанного следует один очевидный вывод. Ветрогенераторы могут быть полезными в районах Крайнего Севера /например — на льдинах у зимовщиков/ или в некоторых других районах, куда затруднена подача энергии в других формах, и где потребности в энергии относительно невелики. Но делать на них ставку при развитии большой энергетики совершенно нереально ни сейчас, ни в ближайшем будущем.