Меню
  Список тем
  Поиск
Полезная информация
  Краткие содержания
  Словари и энциклопедии
  Классическая литература
Заказ книг и дисков по обучению
  Учебники, словари (labirint.ru)
  Учебная литература (Читай-город.ru)
  Учебная литература (book24.ru)
  Учебная литература (Буквоед.ru)
  Технические и естественные науки (labirint.ru)
  Технические и естественные науки (Читай-город.ru)
  Общественные и гуманитарные науки (labirint.ru)
  Общественные и гуманитарные науки (Читай-город.ru)
  Медицина (labirint.ru)
  Медицина (Читай-город.ru)
  Иностранные языки (labirint.ru)
  Иностранные языки (Читай-город.ru)
  Иностранные языки (Буквоед.ru)
  Искусство. Культура (labirint.ru)
  Искусство. Культура (Читай-город.ru)
  Экономика. Бизнес. Право (labirint.ru)
  Экономика. Бизнес. Право (Читай-город.ru)
  Экономика. Бизнес. Право (book24.ru)
  Экономика. Бизнес. Право (Буквоед.ru)
  Эзотерика и религия (labirint.ru)
  Эзотерика и религия (Читай-город.ru)
  Наука, увлечения, домоводство (book24.ru)
  Наука, увлечения, домоводство (Буквоед.ru)
  Для дома, увлечения (labirint.ru)
  Для дома, увлечения (Читай-город.ru)
  Для детей (labirint.ru)
  Для детей (Читай-город.ru)
  Для детей (book24.ru)
  Компакт-диски (labirint.ru)
  Художественная литература (labirint.ru)
  Художественная литература (Читай-город.ru)
  Художественная литература (Book24.ru)
  Художественная литература (Буквоед)
Реклама
Разное
  Отправить сообщение администрации сайта
  Соглашение на обработку персональных данных
Другие наши сайты
Приглашаем посетить
  Баратынский (baratynskiy.lit-info.ru)

   

Аминокислоты и белки

Аминокислоты и белки

Аминокислоты и белки

1. Моноаминомонокарбоновые: Глицин, аланин, валин, лейцин, изолейцин.

2. Моноаминодикарбоновые: глутаминовая и аспаргиновая кислоты.

3. Диаминомонокарбоновые: аргинин, лизин, оксилизин.

7. Гетероциклические: триптофан, пролин, оксипролин, гистидин.

Аминокислота представляет собой производное органиче­ской кислоты, в котором водород в α-положении замещен на аминогруппу (-NH2 ). Например, из уксусной кислоты образуется глицин, аланин. В аминокислотах одновременно присутствуют и кислотная и основная группы (карбоксил —СООН и аминогруппа —NH2 ), они относятся к амфотерным соединениям .

Присутствующие в клетке свободные аминокислоты образуются в ре­зультате расщепления белков или поступают из межклеточной жидкости. Свободные аминокислоты составляют так называемый аминокислотный фонд, из которого клетка черпает строительные блоки для синтеза новых белков.

Связь R—NH—СО—R называется пептидной связью. Образующаяся молекула также является амфотерной, поскольку на одном ее конце всегда находится кислая группа, а на другом - основная; боковые цепи (остатки аминокислот) могут быть основными или кислыми. Комбинация из двух аминокислот носит название дипептида, Пептид, состоящий из небольшого числа аминокислот, назы­вается олигопептидо. и. Если же число аминокислот в молекуле достаточно велико, вещество называют полипептидом.

Расстояние между двумя пептидными связями равно примерно 0,35 нм. Молекула белка с мол. массой 30 000, состоящая из 300 аминокислотных остатков, в полностью вытянутом состоянии должна иметь длину 100 нм, ширину 1 нм и толщину 0,46 нм.

Белки называют протеинами (греч. протео — занимаю пер­вое место). Это слово [в русском языке оно сохранилось лишь в названиях сложных белков] Некоторые длииноцепочечные белки, такие, как и эластин, играют важную роль в построении тканевых структур.

и кол­ нерастворимы и обладают фибриллярной структурой; глобулярные белки, например яичный альбумин и белки сыворотки, растворимы в воде и солевых растворах и их молекулы имеют сферическую, а не нитевидную форму.

Сложные белки, простетическая группа. К ним принадлежат нуклеопротеиды ,липо протеиды и хромопротеиды (гемоглобин, гемоцианин и цитохромы), в которых простетической группой служит пигмент. Простетической группой гемоглобина и миоглобина (белка мышц) является гем — металлсодержащее органическое соединение, связывающее кислород.

Первичная структура белков . Полипептидная цепь, построенная из аминокислот, представляет собой первичную структуру белковой молекулы. Это наиболее важная специфическая структура, до некоторой степени опре­деляющая так называемые вторичную и третичную структуры белка. Агре­гаты белковых субъединиц, обладающих вторичной и третичной структурой, составляют четвертичную структуру.

Изучение порядка расположения аминокислот в молекуле белка стало возможным после того, как были разработаны методы расщепления белков. Первый успех принадлежит Сэнджеру, которому в 1954 г. удалось, наконец, полностью расшифровать последовательность аминокислот в инсулине.

В молекуле белка аминокислоты уложены как бусины на нити, и последовательность их расположения имеет важное биологическое значение. Например, ферментативные свойства некоторых белков определяются по­следовательностью аминокислот на небольшом участке цепи, называемом активным центром

. Молекула белка состоит из нескольких сотен аминокислот, и поэтому полипептидная цепь лишь в редких случаях бывает вытянута полностью; обычно она определенным образом изогнута, образуя вторичную структуру. Фибриллярные белки (склеропротеины) часто характеризуются упорядоченным расположением цепей, благодаря чему их можно исследовать методом рентгеноструктур­ного анализа. В результате этих исследований было найдено, что фибриллярные белки можно разбить на три структурных типа или группы.

В белках типа β-кератина смежные цепи расположены таким образом, что образуют струк­туру складчатого слоя

В белках α-кератина полипептидная цепь закручена в виде спи­рали, образуя так называемую а-спиральную структуру . Водо­родные связи в этом случае являются внутримолекулярными, а не межмо­лекулярными. Для группы коллагена предложена модель, состоящая из трех спиралей.

Третичная структура белков . В глобулярных белках полипептидные цепи определенным образом свернуты, образуя компактную структуру. Расположение таких цепей в пространстве очень сложно, но может быть выяснено мето­дом рентгеноструктурпого анализа.

Многие биологи­ческие свойства белков, например фермен­тативная активность и антигенноетъ, свя­заны именно с третичной структурой.

Четвертичная структура белка; прин­ цип самосборки. В отличие от первич­ной, вторичной и третичной структур, которые содержат одну полипептидную цепь, четвертичная структура состоит из двух или более цепей. Эти цепи могут быть одинаковыми или раз­ными, но в обоих случаях они связаны слабыми связями (нековалентнымн). Нап­ример, молекула гемоглобина состоит из четырех полипептидных субъединиц - двух α и двух β-цепей. Разделение и ас­социация этих субъединиц может проис­ходить спонтанно. Под действием мочевины молекула ге­моглобина распадается на две половники, одна из которых состоит из двух α-субъединиц, в другая из двух β -субъединиц. При удалении мочевины они объединяются вновь, образуя четырехкомпонентную молекулу. Этот процесс высокоспецифичен: объединяться могут только две разные половинки молекул (так называемый принцип самосборки). Многие ферменты и другие белки с мол. массой свыше 50 000, вероятно, обладают четвертичной структурой. Например, альдолаза (мол. масса 150 000) распадается при низком рН на субъединицы с мол. массой 50 000 каждая, но вновь ассоциирует при ней­тральном рН.

Связи в белковой молекуле . В структуре белков встречаются самые различные типы связей. Первичная структура (пептидная связь) полностью определяется химическими, или ковалентными , связями. Между остаткам цистина (например, в инсулине и рибонуклеазе) образуются S—S-связи той же природы. Вторичная и третичная структуры стабилизируются рядом более слабых связей. Эти связи можно класси­фицировать следующим образом:

1. Ионные, или электростатические, связи

2. Водородные связи (длина связи 0,25... 0,32 нм); эти по существу также электростатические связи, но более слабые, чем ионные, образуются между двумя сильно отрицательными атомами — С, N или О.

неполярными боковыми цепями, возникающие в результате взаимного отталкивания молекул растворителя.

4. Связи, образующиеся за счет вандерваальсовых сил при взаимодействии полярных боковых цепей.

Электрические заряды белков2 и —СООН). Так как эти группы участвуют в образовании пептидной связи, в полипептидной цепи свободными остаются только кон­цевые СООН- и - NH2- группы, а также СООН-группы из дикарбоновых амино­кислот и NH2 -группы из диаминокислот. Все эти группы ионизируются сле­дующим образом:

1. Кислые группы теряют протоны и становятся отрицательно заряженными. Этот тип диссоциации встречается в дикарбоновых аминокислотах (аспарагиновая и глутаминовая), у которых свободная карбоксильная группа диссоциирует на СОО- и Н+ .

2. Основные группы, приобретая протон, становятся положительно заряженными. Этот тип встречается в аминокислотах с двумя основными группами (лизин и аргинин), у которых свободные аминогруппы ионизи­руются с образованием положительного заряда.

Все эти так называемые ионогенные группы вместе с концевыми свобод­ными карбоксильными и аминогруппами участвуют в кислотно-щелочных реакциях белков и определяют электрические свойства белковых молекул.

Движение белков в электирическом поле - электрофорез.
Аминокислотыα-, β-, γ-, δ- и т. д. аминокислоты:

α-Аминокислоты являются составными частями белков и уча­ствуют в важнейших биологических процессах. Первая аминокис­лота была выделена в 1820 г. французским исследователем X. Браконно кислотным гидролизом желатины, однако лишь через 13 лет в ней было обнаружено присутствие азота. Позднее была показана роль α-аминокислот как структурных элементов белка (Н. Н. Любавин, 1871 г.). К началу XX в. методом гидролиза бел­ка было выделено более 20 аминокислот.

Для синтеза белков и других биохимических ре­акций организм использует исключительно аминокислоты, а не белки, поступающие с пищей. Некоторые аминокислоты, необходи­мые для роста и нормального функционирования животных орга­низмов, потребляются готовыми из пищи, так как скорость их синтеза отстает от скорости расхода. Такие аминокислоты на­зываются незаменимыми аминокислотами. К ним относятся валин, лейцин, изолейцин, фенилаланин, аргинин, треонин, метионин, лизин, триптофан, гистидии.

α-аминокислот характерны исторические названия. Их про­исхождение связано со свойствами и названиями продуктов, из которых они впервые были выделены. Глицин имеет сладкий вкус (от греч. «глюкос» - сладкий). Цистин выделен из камней желч­ного пузыря (от греч. «цистис» -пузырь). Лейцин получен из мо­лочного белка - казеина (от греч. «леукос» - птица). Аминокислоты называют также по названиям ма­теринских карбоновых кислот. Положение аминогруппы и других заместителей обозначают буквами греческого алфавита. Научная номенклатура к аминокислотам обычно не применяется.

основан на гидролизе белковых природных продуктов, например рогов, копыт, крови (отходов пре­имущественно мясной промышленности), из которых выделяются аминокислоты. Оба способа приводят к получению смеси оптичес­ки активных α-аминокислот L-ряда. Синтетические методы дают рацемическую смесь D- и L-аминокислот.

В отдельных случаях сочетают синтетический и микробиологический способы (лизин). Сначала синтезируют рацемическую смесь аминокислот, а затем ферментативно, в результате поглощения бактериями D-изомера, выделяютL- изомер.

α-аминокислоты получали в незначительных количествах и использовали преимущественно для научных иссле­дований. Сейчас они стали многотоннажными промышленными продуктами в связи с необходимостью обеспечения питанием все возрастающего населения земного шара, из которого, по меньшей мере голодают 500 млн. и недоедает 1 млрд. человек.

Неполноценность пищи заключается преимущественно в нехват­ке белков, которые в желудочно-кишечном тракте гидролизуются до аминокислот L-ряда. Наибольшее значение имеют незамени­мые пищевые кислоты: L-лизин, L-триптофаи, L-метионин и L-глутаминовая кислота. Белковое голодание определяется сейчас в 4 млп. т белка, соответствующих 15 млн. т мяса крупного рогатого скота. Оно преодолевается увеличением ресурсов сельского хозяй­ства (животноводство и земледелие), получением из углеводоро­дов нефти микробиологического белка (кормового и пищевого) без вкуса и запаха, не уступающего по питательности пищевым бел­кам, богатым лизином, но лишенным метионина. Наконец, пита­тельная ценность пищи и кормов значительно повышается добавле­нием к ним небольших количеств незаменимых α-аминокислот. Так, например, добавление 0,1-0,25% лизина к кормам снижает расход кормов на 15-20% и увеличивает привес сельскохозяй­ственных животных на 20%, а введение в корм метионина повы­шает яйценосность кур на 20%. Глутаминова якислота - самая распространенная в мире приправа (после соли)-добавляется для улучшения вкуса почти всех пищевых концентратов и консер­вов. Она также помогает бороться с некоторыми нервно-психичес­кими заболеваниями.

α-Аминокислоты являются основным компонентом синтетиче­ской пищи на углеводной основе, содержащей необходимые вита­мины и синтетические вкусовые вещества. Поэтому возросшая потребность в α-аминокислотах потребовала разработки простых и дешевых промышленных способов их получения с использовани­ем доступных исходных продуктов.

Аминирование α-галогенокарбоновых кислот — первый синтетический метод получения аминокислот (У. Перкин, 1858 г.).

Физические и химические свойства. α-Аминокислоты - твердые кристаллические вещества, вследствие ионного строения имеют высокие и нечеткие температуры плавления, обычно хорошо раст­воримы в воде, плохо в спирте и совсем не растворяются в эфире.

Некоторые β-замещенные γ-аминомасляной кислоты (β-фенил-γ-аминомасляная кислота, фенибут — по официальной терминоло­гии) являются психотропными успокаивающими медицинскими препаратами (транквилизаторами), благоприятствующими улуч­шению состояния психических больных и снижающими нервное на­пряжение у здоровых людей. Их основным преимуществом по сравнению с многочисленными психотропными препаратами, чуж­дыми организму по химическому строению, является отсутствие токсичности вследствие близости строения к естественным продук­там обмена. Воздействие лекарственных веществ — продуктов син­тетической органической химии — на психику изучает новая ветвь фармакологии — психофармакология.

Растения и большая часть мик­роорганизмов способны производить весь набор аминокислот и, следовательно, располагают набором всех ферментов, необходимых для их биосинтеза. У животных, аналогично тому, как это имеет место в случае коферментов и кофакторов, часть ферментов, необходимых для биосинтеза аминокислот из простых и доступ­ных предшественников, отсутствует, в связи с чем некоторые аминокислоты дол­жны быть получены ими с пищей. Такие аминокислоты называют незаменимыми. К их числу относят триптофан, фенилалапин, валин, изолейцин, лейцин, метионин, лизин, аргинин, гнетидин и треонин. Строго говоря, к этой же катего­рии следовало бы отнести цистепп и тирозин, поскольку пути их биосинтеза у этих организмов из доступных предшественников отсутствуют. Однако в продук­тах питания их присутствие не столь обязательно, так как цистеин может легко образовываться из незаменимого метионини, а тирозин — из незаменимого фенил-аланина. Аргинин является незаменимой аминокислотой лишь в период интен­сивного роста организмов, когда он необходим в особенно больших количествах. Умеренные потребности в аргинине у животных могут обеспечиваться за счет функционирования цикла мочевины.

Полностью заменимыми являются восемь амино­кислот: аланин, аспартат, аспарагин, глутамат, глутамин, серин, глицин и пролин.

Глицин используется в качестве строительного блока при синтезе пуриновых колец.