Меню
  Список тем
  Поиск
Полезная информация
  Краткие содержания
  Словари и энциклопедии
  Классическая литература
Заказ книг и дисков по обучению
  Учебники, словари (labirint.ru)
  Учебная литература (Читай-город.ru)
  Учебная литература (book24.ru)
  Учебная литература (Буквоед.ru)
  Технические и естественные науки (labirint.ru)
  Технические и естественные науки (Читай-город.ru)
  Общественные и гуманитарные науки (labirint.ru)
  Общественные и гуманитарные науки (Читай-город.ru)
  Медицина (labirint.ru)
  Медицина (Читай-город.ru)
  Иностранные языки (labirint.ru)
  Иностранные языки (Читай-город.ru)
  Иностранные языки (Буквоед.ru)
  Искусство. Культура (labirint.ru)
  Искусство. Культура (Читай-город.ru)
  Экономика. Бизнес. Право (labirint.ru)
  Экономика. Бизнес. Право (Читай-город.ru)
  Экономика. Бизнес. Право (book24.ru)
  Экономика. Бизнес. Право (Буквоед.ru)
  Эзотерика и религия (labirint.ru)
  Эзотерика и религия (Читай-город.ru)
  Наука, увлечения, домоводство (book24.ru)
  Наука, увлечения, домоводство (Буквоед.ru)
  Для дома, увлечения (labirint.ru)
  Для дома, увлечения (Читай-город.ru)
  Для детей (labirint.ru)
  Для детей (Читай-город.ru)
  Для детей (book24.ru)
  Компакт-диски (labirint.ru)
  Художественная литература (labirint.ru)
  Художественная литература (Читай-город.ru)
  Художественная литература (Book24.ru)
  Художественная литература (Буквоед)
Реклама
Разное
  Отправить сообщение администрации сайта
  Соглашение на обработку персональных данных
Другие наши сайты
Приглашаем посетить
  Достоевский (dostoevskiy-lit.ru)

   

Функция и ее свойства

Русская гимназия

КОНСПЕКТ

на тему:

Функция

Выполнил

ученик 10“Ф” класса Бурмистров Сергей

учитель Математики

Юлина О. А.

Нижний Новгород

1997 год


Функция и её свойства

Функция- зависимость переменной у от переменной x , если каждому значению х соответствует единственное значение у .

независимая переменная или аргумент.

Переменная у- зависимая переменная

Значение функции- у , соответствующее заданному значению х .

Область определения функции-

Область значений функции (множество значений)- все значения, которые принимает функция.

Функция является четной- если для любого х из области определения функции выполняется равенство f(x)=f(-x)

если для любого х из области определения функции выполняется равенство f(-x)=-f(x)

Возрастающая функция- если для любых х1 и х2 , х1 < х2 , выполняется неравенство f( х1 )<f( х2 )

Убывающая функция- если для любых х1 и х2 , таких, что х1 < х2 , выполняется неравенство f( х1 )>f( х2 )

Способы задания функции

¨ Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у =f(x) , где f(x)-íåêîòîðîå âыðàæåíèå с переменной х . В таком случае говорят, что функция задана формулой или что функция задана

¨ На практике часто используется табличный таблица кубов.

Виды функций и их свойства

1) Постоянная функция-у= b , где b- некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат

2) Прямая пропорциональность- функция, заданная формулой у= kx , где к¹0. Число k называется коэффициентом пропорциональности .

y=kx :

1. Область определения функции- множество всех действительных чисел

2. y=kx

3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой

3) функция, которая задана формулой y=kx+b , где k иb -k=0y=b ; если b=0y=kx .

Свойства функции y=kx+b :

1. Область определения- множество всех действительных чисел

2. Функция y=kx+b общего вида, т. е. ни чётна, ни нечётна.

3. При k>0функция возрастает, а при k<0 убывает на всей числовой прямой

прямая .

4)Обратная пропорциональность- функция, заданная формулой y=k /х, где k¹0 Число k называют коэффициентом обратной пропорциональности.

Свойства функции y=k / x:

1. Область определения- множество всех действительных чисел кроме нуля

2. y=k / x -

3. Если k>0, то функция убывает на промежутке (0;+¥) и на промежутке (-¥;0). Если k<0, то функция возрастает на промежутке (-¥;0) и на промежутке (0;+¥).

Графиком функции является гипербола .

5)Функция y=x2

Свойства функции y=x2 :

1. Область определения- вся числовая прямая

2. y=x2 - четная функция

3. На промежутке [0;+¥) функция возрастает

4. На промежутке (-¥;0] функция убывает

Графиком функции является парабола .

6)Функция y=x3

Свойства функции y=x3 :

1. Область определения- вся числовая прямая

2. y=x3 -

3. Функция возрастает на всей числовой прямой

Графиком функции является

7)Степенная функция с натуральным показателем- функция, заданная формулой y=xn , где n - натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п. 2. При n=2;3 получаем функции y=x2 ; y=x3 . Их свойства рассмотрены выше.

y=xn обладает теми же свойствами, что и функция y=x22 , только ветви графика при х>1 тем круче идут вверх, чем больше n, а при х<1 тем “теснее прижимаются” к оси Х, чем больше n.

Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x3 . График функции напоминает кубическую параболу.

8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x-n , где n - натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п. 4.

Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x-n обладает в основном теми же свойствами, что и функция y=1/х.

Пусть n- четное число, например n=2.

Свойства функции y=x-2 :

1. Функция определена при всех x¹0

2. y=x-2 - четная функция

3. Функция убывает на (0;+¥) и возрастает на (-¥;0).

Теми же свойствами обладают любые функции при четном n, большем двух.

9)Функция y= Ö х

Свойства функции y= Ö х :

¥).

2. Функция y= Ö х - общего вида

3. Функция возрастает на луче [0;+¥).

10)Функция y= 3 Ö х

y= 3 Ö х :

2. Функция y= 3 Ö х

3. Функция возрастает на всей числовой прямой.

11)Функция y=n Ö х

При четном n функция обладает теми же свойствами, что и функция y= Ö х . При нечетном n функция y=n Ö х обладает теми же свойствами, что и функция y= 3 Ö х.

12)y=xr r - положительная несократимая дробь.

Свойства функции y=xr :

1. Область определения- луч [0;+¥).

2. Функция общего вида

3. Функция возрастает на [0;+¥).

5 /2 . Он заключен между графиками функций y=x2 и y=x3¥). Подобный вид имеет любой график функции вида y=xr , где r>1.

На рисунке изображен график функции y=x2 /3 . Подобный вид имеет график любой степенной функции y=xr , где 0<r<1

13)Степенная функция с отрицательным дробным показателем- функция, заданная формулой y=x-r , где r - положительная несократимая дробь.

Свойства функции y=x-r :

1. Обл. определения -промежуток (0;+¥)

2. Функция общего вида

¥)

14)

y=f(x) такова, что для любого ее значения yo уравнениеf(x)=yo имеет относительно хf обратима.

Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и областью ее значений является промежуток Y, то у нее существует обратная функция, причем обратная функция определена и возрастает(убывает) на Y.

Таким образом, чтобы построить график функции, обратной к функции y=f(x), надо график функции y=f(x) подвергнуть преобразованию симметрии относительно прямой y=x.

15) функция, аргументом которой является другая любая функция.

Возьмем, к примеру, функцию y=x+4. Подставим в аргумент функцию y=x+2. Получается: y(x+2)=x+2+4=x+6. Это и будет являться сложной функцией.