Меню
  Список тем
  Поиск
Полезная информация
  Краткие содержания
  Словари и энциклопедии
  Классическая литература
Заказ книг и дисков по обучению
  Учебники, словари (labirint.ru)
  Учебная литература (Читай-город.ru)
  Учебная литература (book24.ru)
  Учебная литература (Буквоед.ru)
  Технические и естественные науки (labirint.ru)
  Технические и естественные науки (Читай-город.ru)
  Общественные и гуманитарные науки (labirint.ru)
  Общественные и гуманитарные науки (Читай-город.ru)
  Медицина (labirint.ru)
  Медицина (Читай-город.ru)
  Иностранные языки (labirint.ru)
  Иностранные языки (Читай-город.ru)
  Иностранные языки (Буквоед.ru)
  Искусство. Культура (labirint.ru)
  Искусство. Культура (Читай-город.ru)
  Экономика. Бизнес. Право (labirint.ru)
  Экономика. Бизнес. Право (Читай-город.ru)
  Экономика. Бизнес. Право (book24.ru)
  Экономика. Бизнес. Право (Буквоед.ru)
  Эзотерика и религия (labirint.ru)
  Эзотерика и религия (Читай-город.ru)
  Наука, увлечения, домоводство (book24.ru)
  Наука, увлечения, домоводство (Буквоед.ru)
  Для дома, увлечения (labirint.ru)
  Для дома, увлечения (Читай-город.ru)
  Для детей (labirint.ru)
  Для детей (Читай-город.ru)
  Для детей (book24.ru)
  Компакт-диски (labirint.ru)
  Художественная литература (labirint.ru)
  Художественная литература (Читай-город.ru)
  Художественная литература (Book24.ru)
  Художественная литература (Буквоед)
Реклама
Разное
  Отправить сообщение администрации сайта
  Соглашение на обработку персональных данных
Другие наши сайты
Приглашаем посетить
  Html (html.find-info.ru)

   

Вычисление координат центра тяжести плоской фигуры

Вычисление координат центра тяжести плоской фигуры

Министерство общего и профессионального образования Российской федерации.

Уральский Государственный Технический Университет - УПИ.

ВЫЧИСЛЕНИЕ КООРДИНАТ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ.

Выполнил:

Студент группы Х-149

Покровский П. В.

Проверил:

Преподаватель кафедры ВМ и УМФ

Екатеринбург.

1999.

1. Координаты центра тяжести.

Пусть на плоскости Oxy дана система материальных точек

P1 (x1 ,y1 ); P2 (x2 ,y2 ); ... , Pn (xn ,yn )

1 ,m2 ,m3n .

Произведения xi mi и yi mi называются i относительно осей Oy и Ox.

Обозначим через xc и yc координаты центра тяжести данной системы. Тогда координаты центра тяжести описанной материальной системы определяются формулами:

2. Центр тяжести плоской фигуры.

Пусть данная фигура, ограниченная линиями y=f1 (x), y=f2

Разобьем данную фигуру прямыми x=a, x=x1 , . . . , x=xn =b на полоски ширины Dx1, Dx2 , . . ., Dxn . Масса каждой полоски будет равна произведению ее площади на плотность d. Если каждую полоску заменить прямоугольником (рис. 1) с основанием Dxi и высотой f21 (x), где x, то масса полоски будет приближенно равна

(i = 1, 2, ... ,n).

Приближенно центр тяжести этой полоски будет находиться в центре соответствующего прямоугольника:

Заменяя теперь каждую полоску материальной точкой, масса которой равна массе соответствующей полоски и сосредоточена в центре тяжести этой полоски, найдем приближенное значение центра тяжести всей фигуры:

Переходя к пределу при , получим точные координаты центра тяжести данной фигуры:

d сократилось).

3. Координаты центра тяжести плоской фигуры

1 , P2n c массами m1 , m2 , . . ., mn определяются по формулам

.

В пределе при интегральные суммы, стоящие в числителях и знаменателях дробей, перейдут в двойные интегралы, таким образом получаются точные формулы для вычисления координат центра тяжести плоской фигуры:

(*)

Эти формулы, выведенные для плоской фигуры с поверхностной плотностью 1, остаются в силе и для фигуры, имеющей любую другую, постоянную во всех точках плотность g.

то соответствующие формулы будут иметь вид

Выражения

и

называются статическими моментами плоской фигуры D относительно осей Oy и Ox.

Интеграл выражает величину массы рассматриваемой фигуры.

4. Теоремы Гульдена.

Площадь поверхности, полученной при вращении дуги плоской кривой вокруг оси, лежащей в плоскости этой кривой и не пересекающей ее, равна длине дуги кривой, умноженной на длину окружности, описанной центром тяжести дуги.

Теорема 2.

Объем тела, полученного при вращении плоской фигуры вокруг оси, не пересекающей ее и расположенной в плоскости фигуры, равен произведению площади этой фигуры на длину окружности, описанной центром тяжести фигуры.

II. Примеры.

1)

Условие: Найти координаты центра тяжести полуокружности X2 +Y2 =a2 , расположенной над осью Ox.

Решение: Определим абсциссу центра тяжести: ,

Найдем теперь ординату центра тяжести:

2)

Условие:2

Решение: В данном случае поэтому

(так как сегмент симметричен относительно оси Ox)

3)

Условие: Определить координаты центра тяжести четверти эллипса (рис. 3)

полагая, что поверхностная плотность во всех точках равна 1.

Решение: По формулам (*) получаем:

4)

Условие:

Найти координаты центра тяжести дуги цепной линии.

Решение:

1Так как кривая симметрична относительно оси Oy, то ее центр тяжести лежит на оси Oy, т. е. Xc = 0. Остается найти. Имеем тогда длина дуги

Следовательно,

5)

Условие:

.

При вращении четверти круга вокруг оси Ох получим полушар, объем которого равен

Согласно второй теореме Гульдена, Отсюда Центр тяжести четверти круга лежит на оси симметрии, т. е. на биссектрисе I координатного угла, а потому

III.

1. Данко П. Е., Попов А. Г., Кожевникова Т. Я. «Высшая математика в упражнениях и задачах», часть 2, «Высшая школа», Москва, 1999.

2. Пискунов Н. С. «Дифференциальное и интегральное исчисления для втузов», том 2, «Наука», Москва, 1965