Меню
  Список тем
  Поиск
Полезная информация
  Краткие содержания
  Словари и энциклопедии
  Классическая литература
Заказ книг и дисков по обучению
  Учебники, словари (labirint.ru)
  Учебная литература (Читай-город.ru)
  Учебная литература (book24.ru)
  Учебная литература (Буквоед.ru)
  Технические и естественные науки (labirint.ru)
  Технические и естественные науки (Читай-город.ru)
  Общественные и гуманитарные науки (labirint.ru)
  Общественные и гуманитарные науки (Читай-город.ru)
  Медицина (labirint.ru)
  Медицина (Читай-город.ru)
  Иностранные языки (labirint.ru)
  Иностранные языки (Читай-город.ru)
  Иностранные языки (Буквоед.ru)
  Искусство. Культура (labirint.ru)
  Искусство. Культура (Читай-город.ru)
  Экономика. Бизнес. Право (labirint.ru)
  Экономика. Бизнес. Право (Читай-город.ru)
  Экономика. Бизнес. Право (book24.ru)
  Экономика. Бизнес. Право (Буквоед.ru)
  Эзотерика и религия (labirint.ru)
  Эзотерика и религия (Читай-город.ru)
  Наука, увлечения, домоводство (book24.ru)
  Наука, увлечения, домоводство (Буквоед.ru)
  Для дома, увлечения (labirint.ru)
  Для дома, увлечения (Читай-город.ru)
  Для детей (labirint.ru)
  Для детей (Читай-город.ru)
  Для детей (book24.ru)
  Компакт-диски (labirint.ru)
  Художественная литература (labirint.ru)
  Художественная литература (Читай-город.ru)
  Художественная литература (Book24.ru)
  Художественная литература (Буквоед)
Реклама
Разное
  Отправить сообщение администрации сайта
  Соглашение на обработку персональных данных
Другие наши сайты
Приглашаем посетить
  Бунин (bunin-lit.ru)

   

Решение математических многочленов

РЕФЕРАТ

ТЕМА: МНОГОЧЛЕНЫ

Подготовила:

ученица 7 В класса школы № 58

Черняева Ирина

“Люди, незнакомые с алгеброй, не могут представить себе тех удивительных вещей, которых можно достигнуть при помощи названной науки" Готфрид Лейбниц (учёный, математик).

Труды ал - Хорезми (VIII - IX века), Абу Камила (IX - X века), ал - Караджи (X - XI века), ал-Беруни (X - XI века), Омар Хайяма (XI - XII века), ал-Каши (XIV - XV века) и других ученых стран ислама значительно способствовали развитию алгебры, в частности теории уравнений. Однако в этих трудах отсутствовали символы и знаки. Как содержание задачи и название величин, так и все действия, решение и ответ записывались полностью словами.

Омар Хайям - (полное имя) Гияс ад-дин Фатх ибн Ибрахим Омар Хайям Нишапури - Ghiyath al-Din Abu'l-Fath Umar ibn Ibrahim Al-Nisaburi al-Khayyami (английский перевод)

Родиной Омара Хайяма был Хорасан (г. Нишапур) - область, расположенная к востоку и юго-востоку от Каспийского моря. На богатом историческом материале исследователи доказали заслуги Омара Хайяма как ученого, который сделал ряд важнейших открытий в области астрономии, математики и физики.

Список математических трактатов Омара Хайяма:

Трактат о доказательствах задач алгебры и алмукабалы (Рисала фи-л-барахин 'ала маса'ил алджабр ва-л-мукабала) - Париж, Лейден, Лондон, Нью-Йорк, Рим;

Комментарии к трудностям во введениях книги Евклида (Шарх ма ашкала мин мусадарат китаб Уклидис) - Лейден.

выдающихся предшественников и преемников. Во многом он отправлялся от классиков греческой и эллинистической науки - Аристотеля, Евклида, и других, но вместе с тем он выступает как яркий представитель новой математики с ее мощной и определяющей вычислительно-алгоритмической компонентой.

Здесь мы дадим краткую характеристику математического творчества Хайяма, отсылая за подробностями к нашим комментариям к переводам его трактатов.

Алгебраический трактат Хайяма можно разбить по порядку на пять разделов:

1) введение;

2) решение уравнений 1-й и 2-й степени;

3) решение уравнений 3-й степени;

4) сведение к предыдущим видам уравнений, содержащих величину, обратную неизвестной;

5) дополнение (в тексте трактата такого деления на разделы не имеется).

"Алгебраические решения производятся при помощи уравнения, т. е. как это хорошо известно, приравнивание одних степеней другим". Словом, алгебра определяется как наука об уравнениях и именно о тех уравнениях, которые в настоящее время называются алгебраическими. Мы впервые здесь находим и термин "алгебраисты" - ал-джабриййуна.

Такой же, риторической алгебра оставалась долгое время и в Европе.

Еще в XVI веке уравнение, которое ныне записывается в виде:


записывалось так: "Куб р некоторое количество вещей равно числу".

"некоторое количество" - вместо а;

"вещь" - вместо х,

"число" - вместо Ь.

В 1572 году видный итальянский математик Р. Бомбелли записывал алгебраические выражения так, как показано ниже:

i I Р 2 X " P 2

21 P 41 P 4 g1P 41 P 4

4lp 8 з p 24 2 p 32 I p 16

I " P 2 W

5 I p io 4 p 40 3 p 80 2 p 80 i p 32,Что означает (X + 2) 2 = X2 + 4 X 4 - 4, (x2+ 4x + 4) 2= x4 - b8x3 + 24x2 + 32x + i6.

Такие громоздкие записи затрудняли алгебраические действия, тормозили развитие науки. Между тем не только необходимость, но и возможность введения и употребления кратких записей и буквенной символики стали особенно очевидными после изобретения книгопечатания в XV веке.

Алгебру Диофанта, индийских и западноевропейских математиков до XV - XVI веков, в которой употреблялись отдельные буквы, обозначения и сокращения слов, иногда называют синкопирующей (от греческого "синкопе" - сокращение).

Виета содержали еще много слов вместо символов. Например, вместо знака равенства он писал слово "равно" и т. п.

Алгебраическая символика совершенствовалась и продолжала развиваться в трудах Рене Декарта, Исаака Ньютона, Леонарда Эйлера и других ученых XVII - XVIII веков.

Алгебраическая символика значительно облегчила изучение математики и способствовала ее полному расцвету.

"Геометрии" (1637) Декарт впервые ввёл понятия переменной величины и функции.

Переменная величина у Декарта выступала в двойной форме: как отрезок переменной длины и постоянного направления - текущая координата точки, описывающей своим движением кривую, и как непрерывная числовая переменная, пробегающая совокупность чисел, выражающих этот отрезок. Двоякий образ переменной обусловил взаимопроникновение геометрии и алгебры. У Декарта действительное число трактовалось как отношение любого отрезка к единичному, хотя сформулировал такое определение лишь И. Ньютон; отрицательные числа получили у Декарта реальное истолкование в виде направленных ординат. Декарт значительно улучшил систему обозначений, введя общепринятые знаки для переменных величин (x, у, z ) и коэффициентов (a, b, с), а также обозначения степеней (х 4 , a 5 ). Запись формул у Декарта почти ничем не отличается от современной.

До середины XIX века центральной задачей алгебры было нахождение формулы для корней уравнения P (x) = 0, где P - многочлен произвольной степени. Эта задача была полностью решена в работах молодых математиков первой трети XIX века - Э. Галуа (1811-1832), Н. Абеля (1802-1829) и П. Руффини (1765-1822).

Эварист Галуа

сложения и умножения, лишь извлечение корней, не существует, а Галуа открыл закономерности поведения корней, приложимые к каждому конкретному уравнению.

Параллельно с этим К. Гаусс доказал основную теорему алгебры, утверждающую, что всякий многочлен (коэффициенты многочлена могут быть не только вещественными, но и комплексными числами) имеет хотя бы один корень (возможно, являющийся не вещественным, а комплексным числом). После этого вопрос о вычислении корней многочлена переместился из алгебры в теорию функций и приближенных вычислений.

В XX веке роль многочленов стала меняться. Буквы, входящие в многочлен, все больше стали играть роль символов, не связанную с их конкретными значениями. Самые разные области математики и ее приложений стали использовать символьное исчисление многочленов, не зависящее от теории функций (математическая логика, топология, теория информации, дискретная и компьютерная математика и т. д.).

Математически сообщение может быть записано в виде последовательности символов (точки и тире в старинной азбуке Морзе, нули и единицы и т. п.), передаваемой по так называемому каналу связи (например, в виде радиосигналов).

Определение многочлена

Одночленом от некоторой буквы x называется алгебраическое выражение a. xn

где

a - некоторое число,

x - буква,

n - целое неотрицательное число.

Одночлены называются подобными , если показатели степени у буквы одинаковы. Подобные одночлены можно складывать по правилу:

a. xn + bn . xn = (a+ b). xn

Это действие называется приведением подобных членов .

Многочленом называется алгебраическая сумма одночленов.

Любой многочлен от одной буквы x (ее часто называют переменной ) после приведения подобных членов может быть записан по убывающим степеням этой буквы в виде

F (x) = an. xn + an-1 . xn-1 + …+ a1 . x + ao

F (x) = ao + a1n-1 . xn-1 + ann

Такая запись многочлена называется канонической .

Общепринятый сейчас способ вычисления многочленов восходит к Ньютону и называется схемой Горнера. Эта универсальная (то есть применимая к любому многочлену) схема предельно проста и изящна. Она получается из формулы указанной выше вынесением за скобки x всюду, где это возможно:

F (x) = (… ( ( (x + a1). x + a2). x + a3) …). x + an


Порядок действии при вычислении f (x) определяется скобками в этой формуле. Сначала сложение внутри самой внутренней пары скобок (его результат обозначим через p1, затем умножение и сложение внутри следующей пары скобок (результат p2) и т. д.

p1= x + a1;

p2= p1x + a2;

p3= p2x + a3;

………………. .

всего n-1 умножений и n сложений.

"вслух" впервые лишь в 1954 году!

Можно сделать вывод, что применение алгебраических правил настолько универсальны, что могут применяться не только в точных науках, но и в повседневной нашей жизни. Как в указанных выше примерах:

передачи информации (радио, телефон, передача видеосигналов и т. д.).

Поэтому развитие науки, такой как алгебра, даёт нам огромную помощь в нашей жизни и продвижении вперёд вместе научно-техническим прогрессом. И хочется выразить огромную благодарность всем учёным, математикам, чей вклад был внесён в развитие этой науки.