Меню
  Список тем
  Поиск
Полезная информация
  Краткие содержания
  Словари и энциклопедии
  Классическая литература
Заказ книг и дисков по обучению
  Учебники, словари (labirint.ru)
  Учебная литература (Читай-город.ru)
  Учебная литература (book24.ru)
  Учебная литература (Буквоед.ru)
  Технические и естественные науки (labirint.ru)
  Технические и естественные науки (Читай-город.ru)
  Общественные и гуманитарные науки (labirint.ru)
  Общественные и гуманитарные науки (Читай-город.ru)
  Медицина (labirint.ru)
  Медицина (Читай-город.ru)
  Иностранные языки (labirint.ru)
  Иностранные языки (Читай-город.ru)
  Иностранные языки (Буквоед.ru)
  Искусство. Культура (labirint.ru)
  Искусство. Культура (Читай-город.ru)
  Экономика. Бизнес. Право (labirint.ru)
  Экономика. Бизнес. Право (Читай-город.ru)
  Экономика. Бизнес. Право (book24.ru)
  Экономика. Бизнес. Право (Буквоед.ru)
  Эзотерика и религия (labirint.ru)
  Эзотерика и религия (Читай-город.ru)
  Наука, увлечения, домоводство (book24.ru)
  Наука, увлечения, домоводство (Буквоед.ru)
  Для дома, увлечения (labirint.ru)
  Для дома, увлечения (Читай-город.ru)
  Для детей (labirint.ru)
  Для детей (Читай-город.ru)
  Для детей (book24.ru)
  Компакт-диски (labirint.ru)
  Художественная литература (labirint.ru)
  Художественная литература (Читай-город.ru)
  Художественная литература (Book24.ru)
  Художественная литература (Буквоед)
Реклама
Разное
  Отправить сообщение администрации сайта
  Соглашение на обработку персональных данных
Другие наши сайты
Приглашаем посетить
  Техника (find-info.ru)

   

Индексы 3

С О Д Е Р Ж А Н И Е

1. Введение………………………………………………….. стр. 2

3. Индивидуальные индексы……………………...……….. стр. 6

4. Агрегатные индексы…………………………………….. стр. 8

6. Индексы структурных сдвигов………………….…….. стр. 13

8. Заключение………………………………………..…….. стр. 17

9. Список используемой литературы…….………………. стр. 20

10. 1. Таблица №1………………………….…….. стр. 21

10. 2. Таблица №2…………………………………стр. 22

Относительные величины, получаемые путем сравнения одноименных показателей во времени, в практике экономических исследований и сравнений часто называют индексами, индексами также называют относительные величины, характеризующие соотношения показателей в пространстве, времени или темпах изменений экономических показателей, которые представляют

С помощью индексов можно определить количественные изменения самых различных показателей функционирования народного хозяйства, развития социально-экономических процессов и т. п.

работающих, производительности труда, заработной платы, изменения в цене акций на фондовых рынках (индекс Доу Джонса), сравнительную характеристику изменения погоды за определенный период времени (температуры, влажности, давления) и т. д. и т. п.

Все это говорит о широком диапазоне применения индексов в научной и практической деятельности экономических и других организаций и учреждений.

Индексы в своей основе представляют разновидность относительных величин, характеризующих средние показатели исследуемых процессов или явлений в социально-экономических и других областях деятельности общества. Однако от средних величин, индексы отличаются тем, что они воплощают в себе, как правило, сводные, обобщающие показатели, т. е. выражают собой некоторое содержание, свойственное всем рассматриваемым явлениям и процессам.

В статистике под индексом понимается относительный показатель, который выражает соотношение величин какого - либо явления во времени, в пространстве или сравнение фактических данных с любым эталоном.

С помощью индексов решаются следующие задачи.

- измерение динамики среднего экономического показателя;

- определение степени влияния изменений значений одних показателей, на динамику других;

В международной практике индексы принято обозначать символами i и I ( начальная буква латинского слова index ). Буквой "i" обозначаются индивидуальные ( частные) индексы, буквой "I " - общие индексы.

• z - себестоимость единицы продукции;

• t - затраты времени на производство единицы продукции;

• w - выработка продукции в стоимостном выражении на одного рабочего или в единицу времени;

• v - выработка продукции в натуральном выражении на одного рабочего или в единицу времени;

• Т - общие затраты времени (tq) или численность рабочих;

• zq - издержки производства.

Знак внизу справа от символа означает период: 0 - базисный; 1 - отчетный.

Все индексы можно классифицировать по следующим признакам:

- степень охвата явления;

- вид весов (соизмерителя);

- форма построения;

- состав явления;

- период исчисления.

По степени охвата явления индексы бывают индивидуальные, сводные (общие) и групповые.

Пример. Изменение объема производства отдельных видов продукции (телевизоров, электроэнергии и т. д.), а так же цен на акции какого – либо предприятия.

Сводные

Пример. Изменения физического объема продукции, включающей разноименные товары, индекса цен акций предприятий региона и т. п.

Групповые индексы (субъиндексы) рассчитываются для определенной части элементов совокупности. Например, индекс физического объема по отдельным отраслям или территориям.

По базе сравнения индексы бывают динамические и территориальные.

Динамические индексы служат для характеристики изменения явления во времени. Например, индекс цен на продукцию в 1996г по сравнению с предыдущим. При исчислении динамических индексов происходит сравнение значения показателя в отчетный период со значением этого же показателя за предыдущий период, который называют базисным. Динамические индексы бывают базисные и цепные.

Территориальные индексы служат межрегиональных сравнений. Используются, как правило, в международной статистике.

По виду весов индексы бывают с постоянными и переменными весами.

По форме построения различают агрегатные и средние индексы. Агрегатная форма является наиболее распространенной. Средние индексы являются производными от агрегатных.

По характеру объекта исследования индексы бывают: производительности труда, себестоимости, физического объема продукции и т. п.

По составу явления индексы бывают: постоянного (фиксированного) состава и переменного состава.

По периоду исчисления индексы бывают годовые, квартальные, месячные, недельные.

3. ИНДИВИДУАЛЬНЫЕ ИНДЕКСЫ

Индивидуальный индекс физического объема продукции показывает во сколько раз возрос ( уменьшился) выпуск какого – либо одного товара в отчетном периоде по сравнению с базисным, или сколько процентов составляет рост ( снижение) выпуска товара.

q1

1) iq = ---------

q0

Если из значения индекса, выраженного в процентах, вычесть 100%, то полученная величина покажет на сколько возрос (уменьшился) выпуск продукции.

Индивидуальны индекс цен характеризует изменение цены одного определенного товара в текущем периоде по сравнению с базисным.

P1

2) i р = ---------

P0

Z1

3) i z = ---------------

Z0

Производительность труда может быть измерена количеством продукции, производимой в единицу времени (v), или затратами рабочего времени на производство единицы продукции (t). Поэтому можно построить:

• Индекс количества продукции, произведенной в единицу времени

V1 q1 q0

V0 T1 T2

• Индекс производительности труда по трудовым затратам

t1

5) i t = ------------------

t0

Индивидуальный индекс стоимости продукции (товарооборота) отражает, во сколько раз изменилась стоимость какого - либо товара в текущем периоде по сравнению с базисным, или сколько процентов составляет рост ( снижение) стоимости товара, и определяется по формуле

q1p1

q0p0

Примеры расчета индексов приведены в таблице 1.

В экономических расчетах чаще всего используются общие индексы. В зависимости от цели исследования и наличия исходных данных используют различные формы построения общих индексов: агрегатную или средневзвешенную.

Агрегатный индекс – сложный относительный показатель, который характеризует среднее изменение социально – экономического явления, состоящего из несоизмеримых элементов.

Числитель и знаменатель агрегатного индекса представляют собой сумму произведений двух величин, одна из которых меняется (индексируемая величина), а другая остается неизменной в числителе и знаменателе (вес) индекса..

Индексируемой величиной

К агрегатным индексам относятся.

Формула для расчета индекса имеет вид

Σ q1 p0

Σ q0 p0

В числителе дроби – условная стоимость произведенных в текущем периоде товаров в ценах базисного периода, а в знаменателе – фактическая стоимость товаров, произведенных в базисном периоде.

Данный индекс показывает, во сколько раз возросла (уменьшилась) стоимость продукции из – за роста (снижения) объема ее производства или сколько процентов составляет рост (снижение) стоимости продукции в результате изменения физического объема ее производства.

Если из значения индекса физического объема продукции вычесть 100%, то разность покажет на сколько процентов возросла (уменьшилась) стоимость продукции в текущем периоде по сравнению с базисным из- за роста (снижения) объема ее производства.

Разность числителя и знаменателя (Σp0q1 - Σp0q0) показывает, на сколько рублей изменилась стоимость продукции в результате роста (уменьшения) ее объема.

Пример расчета индекса физического объема продукции по данным таблицы 1.

Σ q1 p0 28022,5

Iq = --------------- = ------------- = 1,6009 или 160,09%

Σ q0 p0 17504

Следовательно, стоимость продукции в мае по сравнению с апрелем возросла почти в 1, 6 раза (рост составил 160 %) за счет увеличения объема производства. Стоимость продукции увеличилась на (160 – 100% )= 60 %, или на 10 518,5 тыс. руб.

Формула для определения индекса цен имеет вид

Σ p1q1

8) Iр = ---------------

Σ p0q1

Σ p1q1 29490

Iр = --------------- = ------------- = 1,0523 или 105,23%

Σ p0q1 28022,5

Следовательно, в среднем по трем товарам цены возросли в 1,0523 раза (или рост цен составил 105, 23 %) . В результате за счет увеличения цен на 5,23% (105,12% - 100%) покупатели заплатили на 1467,5 тыс. руб. больше в мае, чем в апреле ( 29490 – 28022,5 = 1467,5).

Индекс стоимости продукции, или товарооборота (Ipq) представляет собой отношение стоимости продукции текущего периода (Σp1q1 ) к стоимости продукции в базисном периоде (Σp0q0 ) и определяется по формуле

Σ p1q1

9) Iрq = ---------------

Σ p0q0

Данный индекс показывает, во сколько раз возросла (уменьшилась) стоимость продукции (товарооборота) отчетного периода по сравнению с базовым, или сколько процентов составляет рост (снижение) стоимости продукции. Если из значения индекса стоимости вычесть 100% , то разность покажет, на сколько процентов возросла (уменьшилась) стоимость продукции в текущем периоде по сравнению с базисным.

Разность числителя и знаменателя (Σp1q1 - Σp0q0) показывает, на сколько рублей увеличилась (уменьшилась) стоимость продукции в текущем периоде по сравнению с базисным.

Пример расчета индекса стоимости (товарооборота) по данным таблицы 1.

Σ p1q1 29490

Iрq = --------------- = ------------------ = 1,685 или 168,5%

Σ p0q0 17504

Следовательно стоимость продукции (товарооборота) в мае по сравнению с апрелем возросла почти в 1, 7 раза (рост составил 168,5%) Стоимость продукции увеличилась на 168,5 – 100% = 68,5%, или на 11986 тыс. руб. (29940 – 17504).

Как отмечалось ранее, стоимость продукции можно представить как произведение количества товара на его цену. Такая же зависимость существует и между индексами стоимости, физического объема и цен

10) Ipq = Ip*Iq ,

Выполним проверку правильности вычисления ранее определенных индексов

1, 685 = 1,0523×1,6009.

Аналогично рассмотренным выше строятся индексы для показателей, которые являются произведением двух сомножителей:

- затрат времени на производство всей продукции ( произведение затрат времени на производство единицы продукции на количество выработанной продукции).

Помимо агрегатных в статистике используются и средневзвешенные индексы.

К их исчислению прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать общий агрегатный индекс. Например, если отсутствуют данные о ценах, но имеется информация о стоимости продукции в текущем периоде и известны индивидуальные индексы цен по каждому товару, то нельзя определить общий индекс цен как агрегатный, но возможно исчислить его как средний из индивидуальных.

5. СРЕДНИЕ ИНДЕКСЫ

Средний индекс – это индекс, вычисленный как средняя величина из индивидуальных индексов.

При исчислении средних индексов используются две формы средних: средняя арифметическая и средняя гармоническая.

Средний арифметический индекс будет тождествен агрегатному индексу, если весами индивидуальных индексов будут слагаемые знаменателя агрегатного индекса.

Σ iq p0 q0

11) Iq = ---------------

Σ p0q0

Σ q1 p0

Iq = ---------------

Σ q0 p0

Пример расчета среднего индекса цен и физического объема продукции по данным таблицы 1

Σ 28022,5

Iq = --------------- = 1,6009 или 160,09%

17504

29490

28022,5

К ним относятся: индекс переменного состава, индекс постоянного состава и индекс структурных сдвигов.

_

Z1

12) Iпс = ------- = (Σz1q1/ Σq1 ) \ (Σz0q0 / Σq0)

_

Z0

где Iпс – индекс переменного состава.

Индекс переменного состава отражает изменение не только индексируемой величины (в данном случае себестоимости), но и структуры совокупности (весов).

Индекс постоянного (фиксированного) состава – это индекс, исчисленный с весами, зафиксированными на уровне одного какого либо периода, и показывающий изменение только индексируемой величины. Например, индекс фиксированного состава себестоимости продукции рассчитывается по формуле:

Σz1q1 Σz0q1 Σz1q1

13) Iфс = -------------- ÷ ---------------- = ---------------

Σq1 Σq1 Σz0q1

где Iфс – индекс фиксированного состава.

Под индексом структурных сдвигов понимают индекс, характеризующий влияние изменения только структуры изучаемого явления на динамику среднего уровня этого явления. Например, индекс изменения среднего уровня себестоимости определяется по формуле:

Σz0q1 Σz0q0 Σz0q1 Σq1

14) Iсс = -------------- ÷ ---------------- = --------------- ÷ ------------

Σq1 Σq0 Σz0q0 Σq0

Система взаимосвязанных индексов имеет следующий вид

15) Iпс = Iфс * Iсс,

Индекс Индекс Индекс

переменного фиксированного структурных

состава состава сдвигов

Пример. Пусть имеются данные о себестоимости единицы продукции на трех предприятиях в текущем и базисном периодах ( таблица 2 )

выпуске продукции, возросла доля третьего, а доля второго уменьшилась (гр. 3-4).

Рассчитаем индекс переменного состава. Для этого сначала определим среднюю себестоимость единицы продукции в текущем и базисном периодах:

_ 45840

Z0 = --------------- = 19,1 тыс. руб.

2400

_ 55440

Z1 = --------------- = 18,48 тыс. руб.

3000

Тогда Iпс = 18,48 * 19,1 = 0, 9675, или 96, 75%.

Следовательно, средняя себестоимость по трем предприятиям снизилась в текущем периоде по сравнению с базисным на 3,25%, несмотря на то, что на каждом из них в отдельности она возросла. Это объясняется тем, что исчисленный индекс, помимо прочего, учитывает дополнительно влияние структурного фактора.

Рассчитаем индекс себестоимости фиксированного состава

Iфс = 55,4 4 \ 54,3 = 1, 021, или 102, 1%.

Таким образом, себестоимость в текущем периоде по сравнению с базисным возросла на 2,1%.

Iсс = ( 54,3 \ 45,84 ) \ ( 3000\ 2400) = 0,9476 или 94, 76%.

Аналогично строятся системы индексов для других показателей.

7. ОСОБЫЕ ФОРМЫ ЗАПИСИ ИНДЕКСА ЦЕН

Индекс ПАШЕ ( немецкий ученый статистик)

Σ p1q1

16) Iр = ---------------

Σ p0q1

Индекс ЛАСПЕЙРЕСА ( также немецкий ученый статистик)

Σ p1q0

17) Iр = ---------------

Σ p0q0

Индексируемой величиной обеих индексов являются цены. Весами в индексе цен Паше выступает количество продукции текущего периода, а в индексе Ласпейреса - количество продукции базисного периода.

Как правило, значения индексов цен Паше и Ласпейреса не совпадают. Отличие значений объясняется тем, что индексы имеют различное экономическое содержание.

Индекс цен, исчисленный по формуле Паше, дает ответ на вопрос, насколько товары в текущем периоде стали дороже (дешевле), чем в базисном.

Индекс цен Ласпейреса показывает во сколько бы раз товары базисного периода подорожали (подешевели) из - за изменения цен на них в отчетный период.

Индекс цен, рассчитанный по формуле Паше, имеет тенденцию некоторого занижения , индекс Ласпейреса завышения темпов инфляции.

До начала 90 годов отечественная статистика отдавала предпочтение индексу цен Паше, а начиная с 1991 на практике стал шире применятся индекс цен Ласпейреса, которому так же отдается предпочтение и в мировой статистике.

Одним из важнейших показателей статистики цен, широко используемым в экономической и социальной политике, является индекс потребительских цен (ИПЦ). Он находит широкое использование при пересмотре социальных программ, служит основой для повышения минимального размера заработной платы, отражает реальную покупательную способность денег.

Методика расчета этого показателя включает.

экономической деятельности, продукции, услуг и вновь разработанным классификатором на платные услуги населению.

ценах базисного года.

8. ЗАКЛЮЧЕНИЕ

Индексы относятся к важнейшим обобщающим показателям. С помощью экономических индексов можно измерить динамику социально-экономического явления за два и более периодов времени, динамику среднего экономического показателя и сопоставить уровни явления в пространстве: по странам, экономическим районам, областям и т. д. Индексы широко используются также для определения степени влияния измерений значений одних показателей из фактических цен в сопоставимые.

В практике статистики индексы наряду со средними величинами являются наиболее распространенными статистическими показателями. С их помощью характеризуется развитие национальной экономики в целом и ее отдельных отраслей, анализируются результаты производственно-хозяйственной деятельности предприятий и организации, исследуется роль отдельных факторов в формировании важнейших экономических показателей, выявляются резервы производства, индексы используются также в международных сопоставлениях экономических показателей, определения уровня жизни, мониторинге деловой активности в экономике и т. д.

выпускают, как правило, разнообразные виды продукции. Получить общий объем продукции предприятия в таком случае нельзя суммированием количества различных видов продукции в натуральном выражении. Здесь возникает проблема соизмерения разнородных элементов. В качестве меры соизмерения разнородных продуктов можно использовать цену, себестоимость или трудоемкость единицы продукции.

С помощью индексных показателей решаются следующие основные задачи:

1. характеристика общего изменения сложного экономического показателя (например, затрат на производство продукции, стоимости произведенной продукции и т. д.) или формирующих его отдельных показателей-факторов;

2. выделение в изменении сложного показателя влияния одного из факторов путем элиминирования влияния других факторов (например, увеличение выручки от реализации продукции, связанное с ростом цен или выпуска продукции в натуральном выражении). В качестве самостоятельной выделяется задача обособления влияния изменения структуры явления на индексируемую величину. Например, при изучении динамики среднеотраслевой себестоимости продукции исследуется влияние измерения в распределении объемов выпуска продукции по предприятиям отрасли.

Способы построения индексов зависят от содержания изучаемых показателей, методологии расчета исходных статистических показателей, имеющихся в распоряжении исследователя статистических данных и целей исследования.

Индексные показатели в статистике вычисляются на высшей ступени статистического обобщения и опираются на результаты сводки и обработки данных статистического наблюдения.

Результат расчета любым способом должен быть одинаковым и это яркий пример того, что истина всегда одна, хотя пути ее достижения могут быть разными.

9. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Иода Е. В., Герасимов Б. И., Статистика: Учеб. пособие / Под общей ред. Е. В. Иода. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2004.

2. Сизова Т. М., Статистика: Учебное пособие. – СПб.: СПб ГУИТМО, 2005.

3. Октябрьский П. Я. Статистика: Учебник. – М.: Проспектъ, 2003

4. Елисеева И. И., Юзбашев М. М. Статистика: Учебник. - М.:

ТАБЛИЦА № 1 – ЦЕНЫ И КОЛИЧЕСТВО ПРОДУКЦИИ

товар

Единиц.

измерения

Цена руб.

Количество проданных товаров

Стоимость проданной продукции

Индивидуальный индекс, %

Стоимость продукции, проданной в мае, в ценах апреля, тыс.

p 1q1

i p

Стоимоcть

продукции,

проданной

в апреле , в

ценах мая, тыс. руб., р1q0

p0

Май

p1

q0

Май

q1

р0q0

Май

p1q1

Цен

p1

ip=----

p0

объема

продукц

q1

iq=----

q0

Стоимость

p1q1

ipq=------

p0q0

А

Б

1

2

3

4

5

6

7=2:1

8=4:3

9=6:5

11=8*5

12=6:7

Чай

Кофе

Сыр

Пачка

Банка

Кг

1638

6925

5040

1704

7340

5240

1000

2000

400

5000

2500

500

1638

13850

2016

8520

18350

1620

104,03

105,99

500

125

125

520

132

130

8190

17312,5

2520

8190

2520

8190

17312,5

2520

1704

14680

2096

Всего

17504

29490

28022,5

28022,5

28022,5

18480

ТАБЛИЦА № 2 – КОЛИЧЕСТВО ПРОИЗВЕДЕННОЙ ПРОДУКЦИИ И СЕБЕСТОИМОСТЬ ЕДИНИЦ ПРОДУКЦИИ ОДНОГО ВИДА ПО ТРЕМ ПРЕДПРИЯТИЯМ ОТРАСЛИ

Номер

предпри-

ятия

Себестоимость едини-

цы продукции,

тыс. руб.

Индиви-

себе-

сти, %

Iz = z1\ z0

Издержки производства, млн. руб.

Всего единиц

% к итогу

период

q0

Текущий

период

q1

Базисный

Текущий

Базисный

Период z0

Текущий

Период z1

Базисный

период

z0q0

Текущий

Период z1q1

z0q1

А

1

2

3

4

5

6

8=5*1

9=6*2

10=5*2

1

2

3

1680

480

240

1500

600

900

70

20

10

50

20

30

20

18

15

20,3

18,4

15,5

101,5

102,2

103,3

33,6

8,64

3,6

30,45

11,04

13,95

30

10,8

13,5

Всего

2400

3000

100

100

19,10

18,48

45,84

55,44

54,3