Меню
  Список тем
  Поиск
Полезная информация
  Краткие содержания
  Словари и энциклопедии
  Классическая литература
Заказ книг и дисков по обучению
  Учебники, словари (labirint.ru)
  Учебная литература (Читай-город.ru)
  Учебная литература (book24.ru)
  Учебная литература (Буквоед.ru)
  Технические и естественные науки (labirint.ru)
  Технические и естественные науки (Читай-город.ru)
  Общественные и гуманитарные науки (labirint.ru)
  Общественные и гуманитарные науки (Читай-город.ru)
  Медицина (labirint.ru)
  Медицина (Читай-город.ru)
  Иностранные языки (labirint.ru)
  Иностранные языки (Читай-город.ru)
  Иностранные языки (Буквоед.ru)
  Искусство. Культура (labirint.ru)
  Искусство. Культура (Читай-город.ru)
  Экономика. Бизнес. Право (labirint.ru)
  Экономика. Бизнес. Право (Читай-город.ru)
  Экономика. Бизнес. Право (book24.ru)
  Экономика. Бизнес. Право (Буквоед.ru)
  Эзотерика и религия (labirint.ru)
  Эзотерика и религия (Читай-город.ru)
  Наука, увлечения, домоводство (book24.ru)
  Наука, увлечения, домоводство (Буквоед.ru)
  Для дома, увлечения (labirint.ru)
  Для дома, увлечения (Читай-город.ru)
  Для детей (labirint.ru)
  Для детей (Читай-город.ru)
  Для детей (book24.ru)
  Компакт-диски (labirint.ru)
  Художественная литература (labirint.ru)
  Художественная литература (Читай-город.ru)
  Художественная литература (Book24.ru)
  Художественная литература (Буквоед)
Реклама
Разное
  Отправить сообщение администрации сайта
  Соглашение на обработку персональных данных
Другие наши сайты
Приглашаем посетить
  Культура (niv.ru)

   

Проблемы современной энергетики

С О Д Е Р Ж А Н И Е

1. Проблемы выбора источников электрической

энергии......................................... 4

2. Проблемы проектирования линий электропередач.. 5

3. Проблемы проектирования преобразвателей и

распределителей электрической энергии........... 9

Список литературы.............................. 11


- 3 -

Введение

Перспектива создания в будущем крупной космической

которая существенно влияет на общую массу станции,

надежность, управление и стоимость. Большие размеры,

множество потребителей, обеспечение возможности дальнейшего

совершенствования космической станции выдвигают требования,

существенно отличающиеся от тех, которые предъявлялись к

другим космическим системам энергоснабжения. Несмотря на то,

что такая система может иметь большие размеры, она должна

быть способна хорошо адаптироваться к постоянно меняющимся

энергетическую установку, чем на типичную систему

электроснабжения космического аппарата, имеющую

определенный, неменяющийся состав потребителей.

Проблемам проектирования и создания систем

электроснабжения для крупных космических станций посвящено

немало научных статей, в которых рассматриваются источники

электрической энергии, линии электропередач, преобразователи

и распределители электороэнергии.


- 4 -

В основном,в качестве возможных источников

электрической энергии рассматривют следующие [1] :

- фотоэлектронные с электрохимическим накоплением

- источники построенные на динамическом

преобразовании солнечной энергии с термическим накоплением

энергии;

Для фотоэлекторнного преобразования солнечной

энергии используются большие ( 8x8 см ) кремниевые элементы,

которые устанавливаются на гибкие развертываемые панели.

Для накопления энергии применяют топливные

элементы, никель- кадмиевые и никель-водородные батареи.

электрическую эенергию, получаемую от солнечных батерей,

электролиза воды. Электроэнергия затем может быть получена

из тепловой, которая выделяется при соединении накопленного

энергии значительно гибок и топливные элементы значительно

легче батарей, но имеет низкую эффективность и надежность.

Никель-кадмиевые батареи изготавливаются на основе

хорошо отработанной технологиии. Они уже давно успешно

используются в космических аппаратах, хотя низкая глубина


- 5 -

разряда приводит к значительному увеличению их массы.

Никель-водородные батарей были выбраны для

космических платформ, так как они более надежны,чем

никель-кадмиевые батареи. В настоящее время

никель-водородные батареи используются на геостационарных

орбитах. Но что на низкой орбите, где будет располагаться

космическая станция, они будут испытывать гораздо больше

циклов заряда-разряда в год. Проведенные испытания показали,

что время работы никель- водородных батарей на низкой

околоземной орбите составляет около пяти лет.

Несмотря на то, что фотоэлектронные источники

широко используются в космосе, солнечные динамические

энергоустановки оказались более эффективными и менее

дорогими. Принцип работы солнечных динамических установок

заключается в следующем : солнечные лучи фокусируются

параболическим отражателем на приемнике, который нагревает

Затем механическая энергия преобразуется генератором в

Во время затемнения соль остывает и отдает тепло для

расширения рабочего тела. Отражатель состоит из изогнутых

треуголных пластин, с зеркальной поверхностью, установленных

на гексогональных конструкцях соединенных 14-ти футовыми

штангами с космической платформой.


- 6 -

энергоустановки составляет 20-30%; для сравнения,

эффективность кремниевых фотоэлементов составляет 14%.

Эффективность термического накопителя более 90%,

аккоммуляторных батарей - 70-80%, топливных элементов -

55%. Более высокая эффективность позволяет уменьшить площадь

собирателя солнечной энергии, что облегчает решение проблем

динамики станции. Меньшее лобовое сопротивление особенно

важно при размещении станции на низкой высоте - при том же

расходе топлива и на той же орбите увеличивается время

жизни станции.

Несмотря на то, что в настоящее время солнечные

уже существуюет мощная технологическая база, разработанная

для применения в наземных и аэровоздушных условиях. В

качестве рабочего тела применяют толиен (органический цикл

Ранкина с температурой подачи в турбину 750F) или

гелий-ксенон ( цикл Брайтона с температурой подачи в турбину

1300F). Установки с органическим циклом Ранкина мощностью

от нескольких киловатт до нескольких сотен киловатт

Брайтона используются для электроснабжения систем управления

газовых турбин; многие из них имеют тысячи часов наработки.

В программе НАСА 1960 г. была испытана установка с рабочим

циклом Брайтона, которая тестировалась 50,000 часов. Эта же

установка затем была успешно испытана в вакуумной камере.


- 7 -

2. Проблемы проектирования линий электропередач.

Применение атомных энергетических установок связано

со многими проблемами. Однако, уже существует проект

ядерной космической электростанции SP - 100, которая

разрабатывается для обеспечения энергией пилотируемой

космической платформы LEO [2]. Для уменьшения воздействия на

астронавтов радиации, SP - 100 устанавливается на

расстояние 1 - 5 км от платформы. Преимущество этого метода

заключается в том, что значительно уменьшается масса

защитной оболочки реактора , а следовательно и общая масса

системы. Однако, при этом возникает проблема передачи

км.

потребителей космической платформы, но недостаточно высокое

для допустимой массы соединительного кабеля. Для уменьшения

необходимой массы соединительного кабеля необходимо

высоковольтное преобразование. В некоторых работах показано,

помощью кабелей с коаксиальной оболочкой, которая служит

для полной изоляции проводника от космической плазмы.

Эта оболочка необходима, так как поведение космической

плазмы сильно зависит от напряженности электрического поля


- 8 -

оставить высоковольтный кабель незащищенным, и это не

электрического поля не должна превышать 400 В/см.

Напряженность электрического поля вблизи кабеля,

связывающего SP - 100 с космической платформой , будет

составлять 20 - 100 кВ/см.

коаксиальная оболочка имеет большую площадь поверхности, и,

следовательно, будет подвергаться воздействию метеоритов.

Кроме того вблизи ядерного реактора уровень радиации высок.

Это вызывает возникновение в кабеле вихревых токов,что

В процессе проектирования была разработана

защитной оболочке( метеоритный бампер) несколько

коаксиальных высоковольтных кабелей. Для увеличения

защищенности кабеля и уменьшения его массы, применяется

газовое охлаждение. При применении газового охлаждения

в одном метеоритном бампере располагается четыре

коаксиальных кабеля, и этот бампер имеет диаметр в четыре

раза меньший чем, бампер с двумя коаксиальными кабелями и с

полимерной изоляцией.


- 9 -

3. Проблемы проектирования преобразвателей и

Система электроснабжения и подсистемы распределения

космической станции, как указывалось ранее, должны быть

изменению типа и величины нагрузки, и иметь возможность

дальнейшего расширения. Высокая потребляемая мощность

требует более высокого распределительного напряжения, чем

28В, которое обычно используется в космических аппаратах.

напряжение должно быть 440 В. При выборе частоты тока были

рассмотрены в качестве возможных частот - 20 кГц, 400 Гц, и

постоянный ток.

Постоянный ток имеет преимущества в подключении к

определенным потребителям, но напряжение перерменного тока

можно легко изменить.

частотой 400 Гц. Но в космических условиях возникает ряд

проблем - акустические шумы, электромагнитная интерференция

применялись в космической и аэровоздушной технике, но их

применение очень перспективно. При применении высокой


- 10 -

меньше в размерах, легче, более эффективными, особенно,

когда применяется резонансное преобразование переменного

тока в постоянный, постоянного в переменный, постоянного в

постоянный, или переменного в переменный.

Высоковольтным 20 кГц системам электроснабжения

различные проблемы проектирования таких систем -

конфигурация системы, преобразователи, влияние

Важной проблемой проектирования высокочастотных

систем электроснабжения является минимизация количества

преобразования электроэнергии при передаче ее от источника к

потребителю. Каждое преобразование энергии увеличивает

сложность системы, ее массу, искажает форму волны,

увеличивает потери энергии. Наиболее оптимальный вариант,

когда используется только два преобразования - постоянного

тока в переменный, для передачи энергии от источника к

потребителю, и переменного тока в постоянный, для

определенных потребителей. Для второго преобразования

большое значение имеет стандартизация напряжений

потребителей.


1. Ronald L. Thomas,Power is the keystone, Aerospace

America,Sept.,1986.

2. David J. Bents,Power transmission studies for thedered

SP-100,Lewis Research Center,Cleveland,Ohio 44135.

3. Irving G. Hansen, Gale R. Sandberg,Space station 20-kHz

power management and distribution system. Lewis Research

Center,Cleveland,Ohio 44135.

spice, NASA/Marshal Spase Flight Center,Huntaville,Alabama.

power system,Lewis Research Center,Cleveland,Ohio 44135.