Меню
  Список тем
  Поиск
Полезная информация
  Краткие содержания
  Словари и энциклопедии
  Классическая литература
Заказ книг и дисков по обучению
  Учебники, словари (labirint.ru)
  Учебная литература (Читай-город.ru)
  Учебная литература (book24.ru)
  Учебная литература (Буквоед.ru)
  Технические и естественные науки (labirint.ru)
  Технические и естественные науки (Читай-город.ru)
  Общественные и гуманитарные науки (labirint.ru)
  Общественные и гуманитарные науки (Читай-город.ru)
  Медицина (labirint.ru)
  Медицина (Читай-город.ru)
  Иностранные языки (labirint.ru)
  Иностранные языки (Читай-город.ru)
  Иностранные языки (Буквоед.ru)
  Искусство. Культура (labirint.ru)
  Искусство. Культура (Читай-город.ru)
  Экономика. Бизнес. Право (labirint.ru)
  Экономика. Бизнес. Право (Читай-город.ru)
  Экономика. Бизнес. Право (book24.ru)
  Экономика. Бизнес. Право (Буквоед.ru)
  Эзотерика и религия (labirint.ru)
  Эзотерика и религия (Читай-город.ru)
  Наука, увлечения, домоводство (book24.ru)
  Наука, увлечения, домоводство (Буквоед.ru)
  Для дома, увлечения (labirint.ru)
  Для дома, увлечения (Читай-город.ru)
  Для детей (labirint.ru)
  Для детей (Читай-город.ru)
  Для детей (book24.ru)
  Компакт-диски (labirint.ru)
  Художественная литература (labirint.ru)
  Художественная литература (Читай-город.ru)
  Художественная литература (Book24.ru)
  Художественная литература (Буквоед)
Реклама
Разное
  Отправить сообщение администрации сайта
  Соглашение на обработку персональных данных
Другие наши сайты
Приглашаем посетить
  Блок (blok.lit-info.ru)

   

Биологическая роль железа

Категория: Химия

Биологическая роль железа

3. Кинетика обмена железа

4. Этиология дефицита железа

5. Роль питания

6. Диагностическое и лечебное применение железа

7. Библиография

БИОЛОГИЧЕСКАЯ РОЛЬ ЖЕЛЕЗА


функций человеку и животным кроме витаминов необходим целый
ряд неорганических элементов. Эти элементы можно разделить на 2
класса макроэлементы и микроэлементы.

Макроэлементы, к которым относятся кальций, магний,
натрий, калий, фосфор, сера и хлор, требуются организму в
относительно больших количествах ( порядка нескольких граммов в
сутки). Часто они выполняют более чем одну функцию.

Более непосредственное отношение к действию
ферментов имеют незаменимые микроэлементы, суточная

сопоставима с потребностью в витаминах. Известно, что в пище
животных обязательно должно содержаться около 15
микроэлементов.

Большинство незаменимых микроэлементов служит в

они выполняют какую-нибудь одну функцию из трех (по меньшей
мере) возможных функций. Во-первых, незаменимый микроэлемент
сам по себе может обладать каталитической активностью по
отношению к той иди иной химической реакции, скорость которой в
значительной степени возрастает в присутствии ферментного белка.
Это особенно характерно для ионов железа и меди. Во-вторых, ион
металла может образовывать комплекс одновременно и с субстратом
и с активным центром фермента, в результате оба они сближаются

ион металла может играть роль мощного акцептора электронов на
определенной стадии каталитического цикла.

Железо относится к тем микроэлементам,
биологические функции которых изучены наиболее полно.

Значение железа для организма человека, как и в
целом для живой природы, трудно переоценить. Подтверждением



определяется многогранностью его функций, незаменимостью
другими металлами в сложных биохимических процессах, активным

участием в клеточном дыхании, обеспечивающем нормальное
функционирование тканей и организма человека.

Железо принадлежит к восьмой группе элементов

атомный вес 55,847 , плотность 7,86 г/ см). Ценным его свойством
является способность легко окисляться и восстанавливаться,
образовывать сложные соединения со значительно отличающимися
биохимическими свойствами, непосредственно участвовать в
реакциях электронного транспорта.

ЖЕЛЕЗОСОДЕРЖАЩИЕ
ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

В ОРГАНИЗМЕ ЧЕЛОВЕКА

Железо , находящееся в организме человека, можно
разбить на 2 большие группы: клеточное и внеклеточное.
Соединения железа в клетке, отличающиеся различным строением,

и биологической ролью для организма. В свою очередь их можно
подразделить на 4 группы:

1. гемопротеины, основным структурным элементом которых
является гем (гемоглобин, миоглобин, цитохромы, каталаза и
пероксидаза);

2. железосодержащие ферменты негеминовой группы (сукцинат-де -

С-редуктаза и др.);

3. ферритин и гемосидерин внутренних органов;


веществами.


относятся железо-связывающие белки трансферрин и лактоферрин,
содержащиеся во внеклеточных жидкостях.

важную для организма газотранспортную функцию - переносит

отношению к гемоглобину играет роль буфернойсистемы, способной

Дыхательный пигмент крови - сложныйбелок, состоящий

из белковой молекулы - глобина, соединенной полипептидными цепочками с 4 комплексами гема. Глобин состоит из 2 пар ( ) полипептидных цепочек, каждая из которых содержит 141-146 аминокислот. Гем, составляющий 4% веса молекулы гемоглобина, содержит железо в центре порфиринового кольца. У здорового человека гемоглобин гетерогенен. Нормальный эритроцит содержит приблизительно 30 пг. гемоглобина, в котором находится 0,34% железа.

Миоглобин - дыхательный белок сердечной и
скелетной мускулатуры. Он состоит из единственной полипептидной
цепочки, содержащей 153 аминокислоты и соединенный с
гемпростетической группой. Основной функцией миоглобина
является транспортировка кислорода через клетку и регуляция его


0,34% железа. Миоглобин депонирует кислород во время
сокращения мышц, а при их поражении он может попадать в кровь и
выделяться с мочой.

и
железо клетки находится главным образом в митохондриях.
Наиболее изученными и важными для организма ферментами
являются цитохромы, каталаза и пероксидаза.

Цитохромы делятся на 4 группы в зависимости от
строения геминовой группы:

-А - цитохромы с гем - группой, соединяющей формилпорфин;

-В - цитохромы с протогем - группой;

-С - цигохромы с замещенной мезогем - группой;

В организме человека содержатся следующие цитохромы:

а1, аз, в, в5, с, с1, Р450. Они представляют собой липидные комплексы

гемопротеинов и прочно связаны с мембраной митохондрии. Однако,

а микросомы содержат НАДН- цитохром С - редуктазу. Существует

мнение, что митохондриальное дыхание необходимо для процессов
дифференцировки тканей, а внемитохондриальное играет важную
роль в процессах роста и дыхания клетки. Основной биологической
ролью большинства цитохромов является участие в переносе
электронов, лежащих в основе процессов терминального окисления в
тканях.

является конечным ферментом
митохондриального транспорта электронов - электронотранспортной
цепочки, ответственным за образование АТФ при окислительном
фосфолировании в митохондриях. Показана тесная зависимость

между содержанием этого фермента в тканях и утилизацией ими
кислорода.

Каталаза , как и цитохромоксидаза, состоит из единственной полипептидной цепочки, соединенной с гем - группой.
Она является одним из важнейших ферментов, предохраняющих
эритроциты от окислительного гемолиза. Каталаза выполняет
двойную функцию в зависимости от концентрации перекиси
водорода в клетке. При высокой концентрации перекиси водорода
фермент катализирует реакцию ее разложения, а при низкой - и в
присутствии донора водорода (метанол, этанол и др.) становится
преобладающей пероксидазная активность каталазы.

Пероксидаза
обладает защитной ролью, предохраняя клетки от их разрушения
перекисными соединениями. Миелопероксидаза - железосодержащий

геминовый фермент, находящийся в азурофильных гранулах

нейтрофильных лейкоцитов и освобождается в фагоцитирующие вакуоли

в течение лизиса гранул.

Активированное этим ферментом разрушение белка клеточной стенки бактерий является смертельным для микроорганизма, а

функции лейкоцитов. .

К железосодержащим относятся ифлавопротеи новые ферменты ,

в которых железо не включено в геминовую группу и необходимо только для реакций переноса.

Наиболее изученной является сукцинатдегидрогеназа ,

которая наиболее активна в цикле трикарбоновых кислот. Митохондриальные мембраны свободно проницаемы для субстрата фермента.


образом в митохондриях клетки, играет существенную роль в дыхании

электронов при терминальном окислении, в цикле трикарбоновых

кислот.

Ферритин и гемосидерин - запасные
соединения железа в клетке, находящиеся главным образом в
ретикулоэндотелиальной системе печени, селезенки и костного
мозга. Приблизительно одна треть резервного железа организма
человека, преимущественно в виде ферритина, падает на долю

мобилизованы для нужд организма и предохраняют его от

Известно, что гепатоциты и купферовские клетки



железа как гепатоциты, так и кунферовские клетки печени
аккумулируют большое количество дополнительного ферритина,
хотя последние имеют тенденцию запасать относительно больше из
лишнего негеминового железа в виде гемосидерина.

Сферическая белковая оболочка молекулы ферритина состоит из 24 субъединиц, имеющих молекулярный вес
18500 - 19000. Общий молекулярный вес апоферритина 445000.
Электронно-микроскопические исследования показали, что
ферритин имеет полую оболочку с внутренним диаметром 70 - 80 А.

Ядро ферритина состоит из мицелл железо-фосфатного
комплекса, имеющих кристаллическую структуру. Захват и
освобождение железа осуществляется через белковые каналы путем
свободного пассажа, а его отложение и мобилизация происходят на
поверхности микрокристаллов. Стимуляция синтеза ферритина
железом является хорошо установленным фактом.

Как известно, печень является основным
компонентом ретикулоэндотелиальной системы. В конце
жизнедеятельности эритроциты фагоцитируются макрофагами этой
системы, а освобождающееся железо или оседает в печени в виде
ферритина (гемосидерина), или возвращается в плазму крови и
захватывается в паренхиматозных клетках печени и мышц, а также
в макрофагах ретикулоэндотелиальной системы печени, селезенки и
костного мозга. .

Гемосидерин является вторым запасным



что преобразование ферритина в гемосидерин происходит путем
постепенного перенасыщения ферритиновой молекулы железом с
последующим ее разрушением и образованием зрелого
гемосидерина.


привлекает циркулирующий в крови ферритин. Вероятно, он

предположения, что сывороточный ферритин является отражением
активной секреции ферритина из печеночных клеток, возможно из

связанных полисом. Таким образом, его присутствие в сыворотке в
небольшом количестве не является результатом разрушения клеток

организме человека до настоящего времени изучены недостаточно.


железа в организме человека. Отметим, что хорошая зависимость
отмечена между уровнем сывороточного ферритина и
мобилизуемыми запасами железа в организме человека, изученных с
помощью количественных кровопусканий, а также между
ферритином и концентрацией негеминового железа в тканях печени,
полученных с помощью биопсии у людей. Средняя концентрация
его в сыворотке крови у мужчин выше, чем у женщин, с
колебаниями от 12 до 300 мкг/л.

ВНЕКЛЕТОЧНОЕ ЖЕЛЕЗО




составляет 10,8 - 28,8 мкмоль/л. с достаточно большими суточными
колебаниями, достигающими 7,2 мкмоль/л. Общее содержание
железа во всем объеме циркулирующей плазмы у взрослого человека
составляет 3 - 4 мг. Уровень железа в плазме крови зависит от ряда
факторов: взаимоотношения процессов разрушения и образования
эритроцитов, состояния запасного фонда железа в желудочно-
кишечном тракте. Однако наиболее важной причиной,
определяющей уровень плазменного железа, является
взаимодействие процессов синтеза и распада эритроцитов.
Железо-связывающий белок трансферрин, открытый шведскими учеными, содержится в небольшом количестве в плазме крови. Общая железо-связывающая способность плазмы, характеризуящаясяпрактически концентрацией трансферрина , колеблется от 44,7 до 71,6 мкмоль/л, а свободная железо-связывающая способность - резервная емкость трансферрина - составляет 28. 8 - 50. 4 мкмоль/л у здорового человека. .

В плазме здорового человека трансферрин может
находиться в 4 молекулярных формах:

1) апотрансферрина;

2) моножелезистого трансферрина А - железо занимает только
А - пространство;


занимает только В-пространство;

трансферрина

он состоит из единственной полипептидной цепочки с
расположенными на ней двумя значительно схожими, если не идентичными, металлсвязывающими пространствами. Эти пространства (А и В)наиболее прочно связывают железо по сравнению с ионами других металлов. Около 6% железо-связывающего белка составляют углеводные остатки, находящиеся в 2 ответвляющихся цепочках и заканчивающихся сиаловой кислотой. Углеводы, вероятно, не участвуют в механизме захвата железа. Синтезируется трансферрин преимущественно в паренхиматозных клетках печени.
Функции трансферрина в организме представляют значительный интерес. Он не только переносит железо в различные ткани и органы, но и «узнает» синтезирующие гемоглобин ретикулоциты и, возможно другие

нуждающиеся в железе клетки. Трансферрин отдает железо им только в

том случае, если клетки имеют специфические рецепторы, связывающие

железо. Таким образом, этот железо-связывающий белок функционирует

как транспортное средство для железа, обмен которого в организме
человека зависит как от общего поступления железа в плазму крови,
так и от его количества, захваченного различными тканями
соответственно количеству в них специфических рецепторов для
железа. Кроме того трансферрин обладает защитной функцией -
предохраняет ткани организма от токсического действия железа.

трансферрина в
организме, следует упомянуть о результатах экспериментальных

регулировать транспорт железа из лабильных его запасов в эпителии
клеток желудочно-кишечного тракта в плазму крови.
Из плазмы железо захватывается преимущественно костным мозгом

для синтеза гемоглобина и эритроцитов, в меньшей степени - клетками

железа, некоторое количество его поступает в неэритропоэтические
ткани и используется для образования миоглобина и ферментов
тканевого дыхания (цитохромы, каталаза и т. д.). Все эти процессы
являются сложными и до конца не изученными.

Однако некоторые этапы наиболее важного процесса передачи железа трансферрином клеткам костного мозга можно представить следующим образом:

1) адсорбция трансферрина рецепторными участками на
поверхности ретикулоцитов;

2) образование прочного соединения между трансферрином и
клеткой, возможно проникновение белка в клетку;

3) перенос железа от железо-связывающего белка к синтезирующему
гемоглобин - аппарату клетки;



лактоферрин обнаружен
во многих биологических жидкостях: молоке, слезах, желчи,
синовиальной жидкости, панкреатическом соке и секрете тонкого
кишечника. Кроме того, он находится в специфических вторичных
гранулах нейтрофильных лейкоцитов, образуясь в клетках
миелоидного ряда со стадии промиелоцита. Подобно трансферрину,

пространствами. Он состоит из одной полипептидной цепочки,
молекулярный вес приблизительно равен 80000. В физиологических
условиях этот железо-связывающий белок насыщен железом до 20%

освобождаясь в нее из нейтрофильных лейкоцитов. Несмотря на

белки отличаются друг от друга по антигенным свойствам, составу
аминокислот, белков и углеводов.

В настоящее время известны следующие функции

этого белка: бактериостатическая, участие в иммунных процессах и

абсорбции железа в желудочно-кишечном тракте. Свободный от

аполактоферрин обладает бактериостатическими

Аполактоферрин тормозит in vitro рост бактерий и грибов, и возможно,

концентрации лактоферрина в нейтрофильных лейкоцитах может

уменьшаться их бактерицидная активность.

Железосерные ферменты - это еще один важный
класс железосодержащих ферментов, участвующих в переносе
электронов в клетках животных, растений и бактерий. Железосерные

ферменты не содержат гемогрупп, они характеризуются тем, что в их

молекулах присутствует равное число атомов железа и серы, которые

находятся в особой лабильной форме, расщепляющейся под

например, ферредоксин
электронов от возбужденного светом хлорофилла на разнообразные
акцепторы электронов.

КИНЕТИКА ОБМЕНА ЖЕЛЕЗА

Выделение его из организма кишечником, с кожей, потом и мочой,

являющееся пассивным процессом, лимитировано.

В последние 30 лет большое количество исследований

в нашей стране и за рубежом посвящено изучению различных аспектов
всасывания железа. Однако механизм абсорбции и специфическая роль
слизистой оболочки кишечника в регуляции запасов железа и его

ЭТАПЫ ОБМЕНА ЖЕЛЕЗА В ОРГАНИЗМЕ

При среднем поступлении с пищей 10-20 мг железа в сутки у
здорового человека не более 1-2 мг абсорбируется в желудочно-


играет лишь незначительную роль в усвоении: в нем абсорбируется не
более 1-2% от общего количества поступающего в желудочно-кишечный


функциональное и морфологическое состояние эпителия желудочно-
кишечного тракта все это оказывает влияние на величину усвоения
железа.

Кратко остановимся на процессе всасывания железа, состоящем из


оболочки кишечника;


железа в клетке;

3) освобождение железа из слизистой оболочки кишечника в кровь.

эпителия слизистой оболочки кишечника чрезвычайно быстро абсорбируют железо из его полости, причем митохондрии активно участвуют в ранних механизмах транспорта железа. Значительная часть его (80%) находилась в митохондриях клеток, а остальная часть - в щеточной кайме в течение 5-20 минут после введения железа в желудочно-кишечный тракт. Исследования с использованием ультраструктурной авторадиографии показали, что первый этап обеспечивает достаточную концентрацию железа на поверхности слизистой оболочки клеток для

щеточной кайме, закисное железо переходит в окисное на мембране
микроворсинок.

Второй этап поступление железа в богатую рибосомами

третий этап перенос железа в кровеносные сосуды собственной
трансферрином .

Существует точка зрения, что транспортировка железа из цитоплазмы эпителиальных клеток в кровь может осуществляться

Интенсивность захвата железа из клеток слизистой оболочки
кишечника в кровь зависит от соотношения содержания в плазме
свободного, моножелезистого или дижелезистого (насыщенного)
трансферрина. Свободные молекулы последнего обладают максимальной
способностью связывать железо. Комплекс трансферрин железо
поступает главным образом в костный мозг, небольшая часть его в
запасной фонд, преимущественно в печень, и еще меньшее количество

образования миоглобина, некоторых ферментов тканевого дыхания,
нестойких комплексов железа с аминокислотами и белками.

Костный мозг, печень и тонкий кишечник являются тремя

системой тканевых рецепторов, специфичных для трансферрина.
Ретикулоциты костного мозга, так же как и клетки эпителия слизистой
оболочки кишечника, имеют повышенную способность захватывать
железо из насыщенных (дижелезистых) форм трансферрина. Таким
образом, ненасыщенный трансферрин лучше связывает, а насыщенный -
лучше отдает железо. Механизмы регуляции активности рецепторных
полей тканей, играющих определенную роль в абсорбции железа, равно
как и взаимоотношения различно насыщенных форм трансферрина до
настоящего времени не раскрыты.

Основным источником плазменного железа является поступления
его из ретикулоэндотелиальной системы внутренних органов (печени,
селезенки, костного мозга), где происходит разрушение гемоглобина
эритроцитов. Небольшое количество железа поступает в плазму из
запасного фонда и при абсорбции его из пищи в желудочно-кишечном
тракте. Преобладающим циклом в интермедиарном обмене железа в
организме человека является образование и разрушение гемоглобина
эритроцитов, что составляет 25 мг железа в сутки.

Ферритин сыворотки крови, вероятно, осуществляет


человека представляется минимальной.

Обмен железа между транспортным и тканевым его фондами
изучен недостаточно. Это объясняется прежде всего тем, что механизмы,
пути и количественные аспекты движения железа из тканей, исключая
эритропоэтические, в плазму крови и наоборот изучены мало. Расчетные
данные однако, свидетельствуют о том, что величина плазменно-
тканевого обмена железа приблизительно составляет 6 мг в сутки.

Общая картина обмена железа в организме человека представлена
на схеме.

ЭТИОЛОГИЯ ДЕФИЦИТА ЖЕЛЕЗА

В общем виде дефицит железа развивается при нарушении баланса
между поступлением и потерями железа из организма. Его гомеостаз в
организме поддерживается главным образом за счет механизма
абсорбции в желудочно-кишечном тракте, так как выделение железа
лимитировано. Многочисленными исследованиями показано
компенсаторное повышение абсорбции меченого железа при обеднении
им организма, поэтому уместно говорить только о неадекватном
потребностям организма усвоении железа в том случае.

Общее содержание железа в пище и его усвоение, зависящее
преимущественно от соотношения продуктов животного и растительного
происхождения, веществ, усиливающих или тормозящих абсорбцию,


ростом, и расходованием железа с кровопотерями различного
происхождения, а также с отшелушивающимися клетками кожи и
десквамацией кишечного эпителия.

-разнообразные кровопотери;

-недостаточное поступление и усвоение железа из пищи;

-повышенные его затраты при интенсивном росте, беременности и
занятиями физической культурой.

развитию этого состояния. Определенную, но не основную роль в

происхождении обеднения организма железом могут играть нарушения

инфекционно-воспалительные заболевания могут привести к

перераспределению железа в организме и тем самым вызвать


не наблюдается. То же самое можно сказать и об опухолях различных
организмов и систем.

Категория

Возраст ,

годы

Вес ,

кг.

Рост ,

см.

Fe ,

мг.

Новорожденные 0. 0-0. 5 6 60 10
0. 5-1. 0 9 71 15
Дети 1-3 13 90 15
4-6 20 112 10
7-10 28 132 10
Мужчины 45 157 18
15-18 66 176 18
19-22 70 177 10
70 178 10
51+ 70 178 10
Женщины 46 157 18
15-18 55 163 18
19-22 55 163 18
55 163 18
51+ 55 163 10
30-60
Кормящие матери 30-60

РОЛЬ ПИТАНИЯ

Общая масса железа у взрослого мужчины составляет около 4,5 г, у
женщины около 3-4 г. Основная масса (около 75%) железа, составляющая

Вне гемоглобина в эритроцитах содержится ничтожное, не
учитываемое количество железа, входящее в состав клеточных энзимов
(цитохромы, каталаза, оксидаза). Кроме того, при некоторых состояниях,
в частности, после спленэктомии, в некоторых эритроцитах, так
называемых сидероцитах, обнаруживаются гранулы трехвалентного
железа (Fe (III)), дающего при окраске по Перльсу положительную
реакцию на берлинскую лазурь, что указывает на близость к
гемосидерину.

При нормальном содержании гемоглобина, составляемом 15г%, в
100 мл крови содержится 53,4 мг железа. Вся масса крови содержит около
3 г железа. Остальную часть железа составляет железо миоглобина
(мышечного гемоглобина) от 300 до 600 мг и железо дыхательных
ферментов - всего около 1 г. Железо, депонированное в органах, главным
образом в печени, составляет около 0,5 г.

Суточная потребность взрослого человека в железе определяется


Распространенность дефицита железа свидетельствует о том, что
количества железа, абсорбированного из пищи, часто недостаточно для
покрытия потребности в нем практически здорового населения. Однако
довольно трудно установить истинную роль диет в различных районах
земного шара в происхождении этой патологии.

Железодефицитные состояния могут развиваться при длительном

несмотря на нормальную калорийность, с достаточным или высоким его
содержанием, но преобладанием продуктов растительного происхождения, содержащих тормозящие усвоение железа вещества. Длительное вынужденное применение однообразного по составу питания

диет в ряде случаев может способствовать обеднению организма
железом.

ПРОДУКТЫ

ЖЕЛЕЗА

(в мг. на 100 г.)

Хлеб ржаной 2. 0-2. 6
пшеничный 0. 9-2. 8
Крупа гречневая 8. 0
овсяная 3. 9
Рис
Горох 9. 4
Фасоль 12. 4
Мясо (говядина) 2. 6-2. 8
Печень (говяжья) 9. 8
Язык (говяжий) 5. 0
Судак 0. 4
Молоко коровье 0. 1
Масло сливочное 0. 2
0. 9
Творог 0. 4
Соль поваренная 10. 0
Шоколад 2. 7
Лимоны 0. 6
Апельсины 0. 3
Яблоки 2. 2
Земляника 1. 2
Редис 1. 0
0. 5-1. 4
Морковь 1. 2-1. 4

В последнее время для оценки усвоения железа из комплексной
пищи используется новый метод внешняя радиоактивная метка

не отличалась от усвоения при добавлении меченого железа в процессе
приготовления пищи из этих продуктов. Получены доказательства, что
даже при высоком содержании железа в пищевых рационах,
превышающем официальные рекомендации для соответствующих групп
населения, абсорбция его может быть незначительной и не удовлетворять

У жителей Северной Америки дефицит железа в организме - одно
из наиболее распространенных последствий неправильного питания.
Особенно характерен он для детей, девочек подростков и женщин
детородного возраста. Железо может всасываться только в виде ионов
Fe ; его всасывание и выведение протекают очень медленно и зависят от
многих сложных факторов. Усваивается лишь незначительная часть


Лучше всего железо усваивается из мяса, значительно хуже из зерновых
злаков. Молоко содержит очень мало железа.

Железо необходимо для синтеза железопорфириновых белков
гемоглобина, миоглобина, цитохромов и цитохромоксидазы. В крови
железо переносится в форме комплекса с плазменным белком
трансферрином, а в тканях оно накапливается в виде ферритина
белкового комплекса, содержащего гидроксид и фосфат железа.
Ферритин в больших количествах содержится в печени, селезенке и

костном мозгу. Железо не выводится из организма с мочой, оно
выделяется с желчью и калом, а также при кровотечениях. Из-за
удвоенных или утроенных потерь, железа во время менструаций
женщинам необходимы большие количества железа, чем мужчинам. В
хлеб и другие злаковые продукты специально добавляют дополнительное
количество железа, однако это далеко не всегда является решением
проблемы недостаточности железа, так как многие девушки и женщины,
следя за своим весом, исключают хлеб из рациона. Недостаток железа
приводит к железодефицитной анемии, при которой число эритроцитов в
крови остается нормальным, а содержание гемоглобина в них
уменьшается.

ДИАГНОСТИЧЕСКОЕ И ЛЕЧЕБНОЕ

ПРИМЕНЕНИЕ ЖЕЛЕЗА

Железо-связывающую способность сыворотки крови определяют по
шале (A. Shade) в модификации Pата C. Rath) и Финча (C. Finch). Метод

железа образуется комплекс оранжево-красного цвета. Поэтому при
добавлении ферросолей (обычно соли мора) к сыворотке крови

точке насыщения белка.

Содержание железа в плазме крови подвержено суточным
колебаниям - оно снижается ко второй половине дня.


гипопластической анемиях, железодефицитной анемии, острых и
хронических инфекциях, циррозе печени, уремии, злокачественных
новообразованиях, гемолитических и паренхиматозных (но не
застойных) желтухах наблюдаются гиперсидеремии и одновременное
уменьшение НЖСС. Гипосидеремия и одновременное повышение НЖСС
определяются при недостаточном поступлении железа с пищей и при

беременности, острых и хронических кровопотерях, т. е. при так


заболеваниях.

Обмен железа в организме во многом зависит от нормального
функционирования печени, поэтому определение содержания железа в

печеночной пробы. При паренхиматозных поражениях печени

погибающий гепатоцит отдает железо в кровь. Вместе с тем из-за утраты


процесса вызывают при острых паренхиматозных заболеваниях печени
гиперсидеремию, которую особенно важно учитывать при
эпидемическом гепатите, т. к. при вирусных инфекциях содержание
железа в сыворотке крови снижается.

В отличие от паренхиматозной желтухи механическая желтуха
всегда протекает при нормальном или несколько пониженном

Радиоактивное железо применяют в радиоизотопной диагностике,
для изучения эритропоэза, обмена и всасывания железа, главным
образом, в виде цитрата или хлорида. Наиболее широкое клиническое
применение находят препараты, меченные Fe. Препараты, меченные
Fe, в клинической практике применяются редко из-за длительного
периода выведения из организма и неудобства детектирования его
излучения. В ряде случаев (сканирование головного мозга и др.)

создает значительно меньшую дозу облучения организма. При
определении усвояемости железа эритроцитами радиоактивное железо

дня берут пробы крови и путем измерения Fe-активности эритроцитов

ЛЕЧЕБНОЕ ПРИМЕНЕНИЕ ЖЕЛЕЗА

При анемических состояниях лечебное применение железа

обусловлено его участием в процессе гемоглобинообразования,

совершающемся в эритробластах костного мозга.

Показаниями к применению железа являются железодефицитные
анемии различной этиологии (анемии от кровопотерь, алиментарные
анемии, хлороз, анемии беременных и др.), Протекающие с пониженным


встречающегося у 20-30% практически здоровых женщин. Назначение

железа), сочетающихся с анемией или проявляющихся самостоятельно:
при сидеропенической дисфагии Россолимо-Бехтерева, коилонихии,
извращенности вкуса и обоняния, зловонном насморке (онезе).

При назначении препаратов железа внутрь следует учитывать
анатомно-функциональное состояние желудочно-кишечного тракта,
особенно его верхних отделов желудка, двенадцатиперстной кишки и


эритропоэз, абсорбция железа возрастает и осуществляется на
протяжении всего кишечника, включая слепую кишку.

Лечебное применение железа обусловлено необходимостью
восстановления нормальной концентрации не только гемоглобина, но и
железа в тканях. Недостаточное лечение, в результате которого резервы



-повышение цветного показателя крови;

-повышение числа эритроцитов показателя гематокрита

(в меньшей степени);

-нормализация величины концентрации сывороточного железа;

-снижение общей и латентной железо-связывающей способности
сыворотки крови;

-повышение насыщенности трансферрина железа;

-пополнение тканевых резервов железа, определяемых при помощи
десфераловой пробы.

Показателем эффективности лечения препаратами
железа является также обратное развитие трофических нарушений
эпителия и эндотелия, связанных с дефицитом железа.

БИБЛИОГРАФИЯ:

1. Большая Медицинская Энциклопедия,
под редакцией Б. В. Петровского, М., 1978.

2.

3. Петров В. Н. «Физиология и патология обмена железа »,

Л., 1982.

4. Кассирский И. А. «Клиническая гематология »,

М., 1970.

5. Верболович П. А., Утешев А. Б. «Железо в животном

организме», А-Ата, 1967.